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Abstract

This paper discusses the impact of the labour share on growth using historical

national accounts for three countries: the United Kingdom from 1856-2010, France

from 1896-2010 and the United States from 1898-2010. The value added of this paper is

the use of data over a longer timespan than the usual system of national account series

and the performance of single country estimations in contrast with existing panel data

analysis. Another contribution of this paper is to perform a time-frequency analysis

and a time-varying analysis of the relation between (functional) income distribution

and growth. We find evidence of common information between growth and income

distribution at low frequency, with the labour share leading growth. We also show

that the sign of the coefficient associated with the labour share is negative at high

frequencies and turns positive at low frequencies. Lastly, the coefficient associated

with the labour share increases over time. ———————
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1 Introduction

This paper assesses the impact of the distribution of income between labour and capital

on economic growth for three countries: the United Kingdom from 1856-2010, France from

1896-2010 and the United States from 1898-2010 using the database of Piketty and Zucman

(2014) as well as that of Groth and Madsen (2013). The link between the labour share and

growth is studied using a historical time series covering at least the XXth centuries (and

more), which enables a more long-term perspective on this topic. An additional feature of

our work is the performance of a time-frequency analysis to test whether the sign of the

relation between growth and the labour share changes across frequencies and over time.

The main motivation for this work is the renewed interest in studying functional income

distribution. Although a major topic of study for classical economists, this issue has rarely

been taken up in economics in recent times with the exception of a small part of the

profession such as the Post-Keynesian for instance. This renewed interest is linked to the

increasingly documented erosion in the labour share, which has called into question the

previously well accepted stylized fact that the labour share is constant. The stability of

factors shares has been long considered a stylized fact of macroeconomics. It is sometimes

called the Bowley’s law and has been alleged true by many economists such as Kaldor

(1955) for instance.1 This assertion has been somewhat unquestioned with the exception

of Solow (1958) who, for example, argued that large changes in the labour share take place

at industry level. More recently, the issue of the decline in labour share in the past two to

three decades has been discussed in economic literature as for example by Guscina (2006),

Young (2010) or Elsby et al. (2013). In particular, Piketty (2013) argues that profit share

can be characterized by a U shape function of time: 35-40% in the XIXth century, 20-25%

in middle of the XXth century and 25-30% in the early XXIst century. It follows that

the labour share cab be seen as an inverted U shape function of time. Beyond the debate

about the long run stability of the labour share, Blanchard and Giavazzi (2003) argue that

functional income shares experience significant fluctuations in the short to medium run.

It would therefore be natural to enquire about the impact of changes in functional income

distribution on growth.

The transmission channel from the labour share to growth can be understood only

indirectly through modern macroeconomics, as single representative agent models rule out

any impact of changes in income distribution by definition. A first transmission channel

exists via the labour-demand effect associated with changes in labour cost, as for example,

in search and matching models.2 Higher wages reduce the surplus from an additional match

in the labour market and lead firms to reduce vacancy posting. This is translated into

1Bowley’s law has been labelled as such by Samuelson. For more details about the origin of the labour

share stability in economists see Kramer (2011).
2See Gertler and Trigari (2009) or Gali et al. (2011) for instance.
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lower employment and lower production. Another transmission channel relates to credit

constrained households. Rule-of-thumb households create a link between labour income

and consumption decisions3. In a model with endogenous credit constraints, Kumhof

et al. (2015) show that lower wages can lead to over-indebtedness and a Minsky moment.4

Previously, Goodwin (1967) highlighted the profit squeeze effect of a higher labour share.

This paper also attempts to determine whether the link between income distribution

and growth differs across different time horizons. The main motivation for applying fre-

quency analysis to the question of distribution and growth is that both theoretical models

as well as empirical studies point to different sign of the relation that can be related to

different time scale. Theoretical DSGE models5 with a search and matching module of

the labour market point to the negative impact of higher wage on vacancy posting at the

business cycle frequency. Models with endogenous credit constraints address economic

dynamics that take place over a longer time frame than business cycle DSGE models. In

Kumhof et al. (2015), the model is calibrated on an annual frequency and generates 50-

year impulse responses following highly auto-regressive shocks ρ = 0.96. Similarly, there

has been much debate with respect to the frequency relevance of the Goodwin model.

Goodwin (1967) argues that his paper is a ”model of cycles in growth rates”, which offers

”better prospects than the more usual treatment of growth theory or of cycle theory”,

which leaves open the question of the time scale of his contribution.6 Atkinson (1969),

for instance, discusses the time scale of the Goodwin model, concluding that the model is

better suited to the 16-22 year Kuznets cycle than the trade cycle.

Empirical studies of functional income distribution also point to different properties of

the labour share at different time scales. The labour share shows strong counter-cyclical

behaviour at the business cycle frequency. This can be explained by labour hoarding

and/or a lag in the adjustment of wages to economic fluctuations. On the other hand,

Bentolila and Saint-Paul (2003) show that the labour share is determined by technology

as well as by the bargaining power of workers and firms in the long run (proxied by trade

and financial globalization).

The time-frequency analysis is performed using wavelet analysis. The wavelet analysis

allows the identification of local and global dynamic properties of a signal process (e.g. a

stochastic process) at different time scales (time horizons). In other words, the wavelet

analysis makes use of a transform that decomposes a signal process into different time

3An example of DSGE models with rule-of-thumb households is Gaĺı et al. (2007).
4A shock on the bargaining power of workers is one way to modify income distribution in DSGE model

with a search and matching on the labour market. The impact on functional income distribution may be

limited as a change in the real wage is offset to some extent by an opposing change in labour demand.

In order to produce large distribution effects Kumhof et al. (2015) model a bargaining shock while the

employment level is kept constant.
5Dynamic Stochastic General Equilibrium model.
6A recent version of the Goodwin model can be found in Chiarella and Flaschel (2000)
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horizons. The wavelet transform consists of two basic functions: the mother wavelet

function and the father wavelet function. The former is used to capture the properties

of the signal process at high frequencies (detailed parts of a signal) while the latter is

used to capture the properties of the signal process at low frequency (smooth part of a

signal). In order to obtain the different detailed parts of a signal process, the mother

function is dilated and shifted. Wavelets have been increasingly applied in economics,

especially in finance as for example, by Gallegati and Ramsey (2013), Gallegati et al.

(2011) or Aguiar-Conraria and Soares (2012). The choice of wavelet is motivated as HP

filters have been criticized for overdifferencing, which may cause spurious autocorrelation

(see Canova (1998) for a discussion of the pros and cons of different filtering techniques).

Other frequency methods such as Fourier transforms lose the time dimension of the data,

while wavelets combine both the frequency and the time dimensions. Additionally, Fourier

transforms are not well suited to non-stationary data as they are global methods. A single

disturbance in the data under a Fourier transform will be translated into the entire series.

On the contrary, wavelets are local as they are constructed over a finite interval of time.

The local features of wavelets make them well suited to study series that include breaks,

such as those produced by wars for instance.

The drawback of using historical data is the estimation of a stable coefficient over a

long period of time, despite the major transformations experienced by the three countries

considered over the XXth century. In order to avoid this shortcoming, frequency analysis

is combined with time analysis made possible by wavelet-specific tools such as power

spectrum, coherency analysis and cross-wavelet power. We also look at the stability of the

relation between distribution and growth over time by performing rolling correlation and

rolling regression using different size of the window.

This paper adds to the literature estimating the consumption, investment and com-

petitiveness effects associated with a change in functional income distribution as in Stock-

hammer et al. (2009) for instance. Existing studies usually only go back to the 1960s, as

national account series are not uniformly available before this date. This limits empiri-

cal investigation to either performing single country estimation on a restricted number of

data points or to performing panel data regression. The former is limited by the degrees of

freedom while the latter pools together heterogenous countries and estimates an average

effect across countries. Closely related to this is the literature testing the Goodwin model.

Mohun and Veneziani (2006) conclude, based on US data since 1950, that the Goodwin

model applies to the business frequency, while Kauermann et al. (2012), using quarterly

data since 1950 and applying penalized spline regression, argue in favour of a long run

Kondratiev cycle between income distribution and growth.

This paper also shares similarities with the inequality-growth debate. There is vast

empirical literature assessing the growth effect of changes in personal income distribution

using GINI indexes as a proxy for personal income distribution. The literature has evolved
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from using cross-sectional data as in Alesina and Rodrik (1994) towards using panel data

as the database on GINI indexes has improved. This literature tests for a large range

of transmission channels such as the level of economic development, non-linear effects

(Banerjee and Duflo, 2003) and duration of growth spells (Berg and Ostry, 2011) for

instance. Interestingly, Halter et al. (2014) show that inequality affects growth positively

in the short run and negatively in the long run. A difference with our work is that they

look at inequality, while we look at factor shares. Another difference is that they do

not use a time-frequency specific methodology to test for the time dimension whereas we

do.7 Lastly, few attempts have made use of the top income share as a proxy for income

distribution. Andrews et al. (2011) find a small positive effect of an increase in top income

on growth using a panel data for 12 countries over the period 1960-2000.

The paper is organized as follows: Section 2 discusses the data source and the definition

of the labour share with a focus on the measure of self-employment income. Section 3 is

methodological and presents the main properties of wavelets as well as wavelet-specific

instruments such as power spectrum, coherency analysis and cross-wavelet power. Section

4 discusses the distribution of information over time and across frequencies as well as the

covariance between growth and income distribution over time and across frequencies using

continuous wavelet analysis. Section 5 performs scale by scale correlation and regressions

to test whether the sign of the relation changes across frequencies. This section makes use

of discrete wavelet analysis. Section 6 discusses the stability of the relation over time and

section 6 concludes.

2 The labour share of income in France, the UK and the USA

2.1 Definitions and trends

This section describes the data source and the various definitions of the labour share of

income. The data source for France and the UK are taken from Piketty and Zucman

(2014) (PZ from now on), while the data source for the United-States is taken from Groth

and Madsen (2013). For consistency, the analysis presented in the following sections is

reproduced in the appendix using the PZ data for the United-States.

The labour share of income measures the share of income that goes to labour as opposed

to the capital share of income, which measures the share of income that goes to capital.

Labour income is based on national account and sums up different components of the

compensation of employees. The definition of the labour share ls based on the PZ data in

France and the UK is described in eq 1. Total labour income is the sum of the compensation

of employees paid by corporation cec and paid by the government ceg.

7Dominicisn et al. (2008) provide a meta-analysis and calls for the use of single country estimation.
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ls =
(cec + ceg + cec ∗ ndphh/ndpc)

ndp− pt
(1)

Total labour income is also augmented by the imputation of the labour income of the

self-employed defined as the labour share in the corporate sector
(
cec
ndpc

)
multiplied by

the net domestic product of the non-corporate business sector ndphh. ndpc is the net

domestic product of the corporate sector. This imputation assumes that the distribution

of income between labour and capital in the non-corporate business sector is identical

to the distribution of income between labour and capital in the corporate sector. The

denominator is a measure of national income: net domestic product ndp minus production

taxes. Subtracting production taxes from the denominator corresponds to a measure of

the labour share at factor costs.

cs =
(gcpc − cdc + ndph + (gcpc − cdc) ∗ ndphh/ndpc)

ndp− pt
(2)

The capital share cs is defined in eq 2 as the sum of gross corporate profits net of

capital depreciation in the corporate business sector (gcpc−cdc), the net domestic product

in the housing sector ndph and the imputed capital share in the non-corporate business

sector divided by a measure of national income (ndp− pt). The imputed capital share in

the non-corporate business sector is the capital share in the corporate sector
(
gcpc−cdc
ndpc

)
multiplied by the net domestic product of the non-corporate business sector ndphh. Under

this definition, the labour share of income and the capital share of income sums to one

and can be used interchangeably. This imply a small difference with the definition used

in PZ, which incorporate foreign labour income in the numerator and net foreign factor

income in the denominator. However, the differences are small as shown in Figure 1.8

In the United-States, primary income distribution data goes back to 1929 in the

Piketty-Zucman database.9 The definition follows the definition of the labour share in

France as the self-employment labour income is imputed from the labour share in the cor-

porate sector. The time series are therefore shorter than in the other two countries. The

series also start with the Great Depression and shows large fluctuations at the beginning

of the series.

An alternative is the database by Groth and Madsen (2013), which provide labour

share data based on historical source before 1960 and OECD data after 1960. For the

8The definition used in PZ refers to Table FR.11b and Table UK.11a downloaded

from http://piketty.pse.ens.fr/fr/capitalisback. The labour share is defined as lspz =
cec+ceg+cef+cec∗ndphh/ndpc

ndp+nffi−pt
, while the capital share is defined as cspz =

cic+cih+cig+cif+cic∗ndphh/ndpc
ndp+nffi−pt

.
9These definition refers to Tables US.11 and US.10.
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United-States, the historical data are taken from Liesner (1989). The labour share is

defined as total labour costs over value-added in the corporate non-agricultural private

sector (this definition is labelled lsgm in the rest of the paper). This definition is slightly

more restrictive than ls or lspz as it excludes some sectors from the definition. However,

it is close to the definition of the labour share in the corporate sector
(

cec
ndp−pt

)
and has

the advantage of starting in 1898. The original time series in Groth and Madsen (2013)

ended in 2001 and have been updated using OECD data.

[Figure 1 about here.]

Figure 1 displays the labour share in the three countries considered. Each figure

displays the labour share ls as well as the definition lspz. In the three countries considered,

the evolution of the labour share over the period 1950-2010 is in line with existing studies.

The labour share increases until the 1970s before to decline up to the Great Recession in

the late 2000s. A difference between France and the other two countries is that both the

increase and the decrease are much more gradual. The labour share is constant in the

1960s and increases abruptly in the 1970s. The correction is as abrupt as the increase and

took place almost entirely in the 1980s with the labour share stabilizing at a lower level

than the pre-1970s level. There is little differences between the ls definition and the lspz
definition in France and the UK. In the US, the rise in the labour share in the 1970s is

much less apparent under the lsgm definition than under the two alternative definitions.

Additionally, the decline in the labour share since the 1980s is much more pronounced

under the lsgm definition.

The labour share shows a similar pattern in France and in the UK between 1900 and

1950. The labour share declines up to the Great Depression and recovers afterwards.

The labour share then cumulates with the Second World War. In both countries, the

two World Wars have had an important impact on the labour share. Both wars are

characterized by a large increase in the labour share as these events are associated with

large capital destruction, poorly functioning market economies, and a large increase in the

size of public sector and public employment at least via military enrollment. While in

France, the labour share quickly returns to its pre-crisis level after World War I, in the

UK, the war had a threshold effect the labour share being higher than its pre-war level.

The threshold effect is associated with an increase in the labour share in the corporate

sector that remains high until the World War II. In the United-States, the labour share

displays a slightly different evolution. It first increases up to the World War I and then

declines up to the Great Depression before to recover during World War II. The labour

share series date back to 1855 in the UK. Over the second half of the XIXth century the

labour share first declines up to 1875 and then recovers up at the end of the century.

Piketty (2013) describes the evolution of the capital share in France and the UK as

a U shape function of time over the period going from the beginning of the XIX century
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and the beginning of the XXI century. The capital share is around 35%-40% in the XIX

century, it then drops to 20%-25% in the middle of the XXth century and then recovers

to 25%-30% at the beginning of the XXIth century. It would follow that the evolution

of the labour share is an inverted U shape function of time. Figure 1 is restricted to the

XXth century in France and starts only in 1856 in the United-Kingdom. The average

labour share is 0.73 in France between 1896 and 1939. It then increases to 0.78 over the

period 1950-1974 (excluding World War II) and then drops to 0.76 between the period

1993-2010 (excluding the 70s and 80s boom and bust). The amplitude of the fluctuations

are much more restricted than that described by Piketty as he describes fluctuation by

5 percentage point to 10 percentage point. Similarly, in the UK, the labour share is

on average respectively at 0.73, 0.77 and 0.73 over the same subperiod (the first period

starting in 1856 rather than 1896). In the United-States, the labour is 0.64, 0.65 and

0.61 over the same subperiods. In the United-States, the labour share is quite constant

until the marked decline from the end of the 1970s. As underlined previously, the steady

increase in the labour share in the post World War II is less marked using the Groth

and Madsen series as the sectoral coverage is restricted to the corporate non-agricultural

private sector. Regardless of whether the labour share is U shaped, the labour share

displays large fluctuations. The question arises whether this fluctuations have an impact

on economic growth.

Explaining changes in the labour share is not straightforward as it results from both

technological changes and modification in the bargaining power of workers. Bentolila

and Saint-Paul (2003) shows for instance that the wage share depends on the capital

output ratio and the type of production function considered. Contrastingly, institutional

variables usually include proxy for trade and financial globalization, as well as labour

market regulation. Harrison (2002) or Jaumotte and Tytell (2007) find evidence that

trade openness affects negatively the labour share of income in both high and low income

countries. Jayadev (2007) underlines the negative impact of capital account openness and

financial globalization on the the labour share of income. Lastly, labour market regulation

has ambivalent effect on functional income distribution, as it may have opposite price

effect and quantity effect (see Checchi and Garcia-Penalosa (2010)). Recently, Elsby et al.

(2013) pointed to the importance of offshoring.

2.2 Imputing the Self-employment labour income

One important issue is to account for the labour income of the self-employed. As self-

employment labour income cannot be directly observed, the imputation method chosen

may affect the trend in the labour share (Gollin, 2002). There are usually three alternative

adjustments: attributing all self-employment income to labour income (lsse1), measuring

national income net of the non-corporate business sector (lsse2) and imputing the dis-
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tribution of labour and capital of self-employment income based on the corporate sector

either using production data as in Piketty and Zucman (2014) or employment data as in

Bentolila and Saint-Paul (2003).

Figure 2(d) illustrates the three possibilities in the case of France. lsse1 is defined

as lsse1 =
cec+ceg+gmihh+cehh−cdhh

ndp−pt with (gmihh + cehh − cdhh) being equivalent to the

net domestic product of the non-corporate business sector.10 The main difference with

eq 1 is that the decline in the size of the non-corporate business sector after world war

II generates a decline in the labour share of income under this definition. The definition

lsse1 clearly over-estimates the decline in the labour share of income in recent years. The

second alternative for self-employment income is lsse2 =
cec+ceg

ndp−pt−(gmihh+cehh−cdhh) . This

definition subtracts from national income the size of the non-corporate business sector.

The assumption is that the capital labour distribution in the non-corporate business sector

is similar to the distribution in the rest of the economy. The main difference with the eq 1

is that the labour share shows an upward trend over the period 1945-1970. These two

alternative ways to account for self-employment income shows that the imputation of

the self-employment labour income in eq 1 is comprised between these two alternative

definitions over most of the sample.

The labour share computed in Piketty and Zucman for the U.K. differs from the labour

share computed in France with respect to the measurement of self-employment labour

income. In the case of France, self-employment income is imputed based on the share of

labour income in the corporate sector. In the case of the U.K., self-employment income is

imputed using employment data. Self-employment income is the sum of three components:

non-corporate wages, labour share of agricultural self-employment net income and labor

share of non-agricultural self-employment net income.11

lsukpz =
cec + ceg + cef + cehh + cesea + cesena

ndp+ nfi− pt− ptf
(3)

with cec wages and social contributions paid by corporations, ceg wages and social

contributions paid by govt, cef net foreign labor income, cehh wages and social contribu-

tions paid by non-corporate business (and households), cesea labor share of agricultural

self-employment net income and cesena labor share of non-agricultural self-employment net

income. pt is product taxes (total) and ptf is net foreign product taxes and subsidies.12

10gmihh is gross mixed income of self-employment, cehh is wages and social contributions paid by non-

corporate business and cdhh is capital depreciation of non-corporate business.
11This definition refers to Table UK.11a.
12According to Piketty and Zucman (2014): ”Net foreign product taxes and subsidies were computed as

the difference between current account total and components (excluding this term); for years 1997-2010,

where detailed foreign product taxes and subsidies series are available, the sum and total coincide almost

perfectly.”
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The non-corporate wage is based on the authors’ assumption regarding the evolution

of wages over the period 1855 to 1876 and is then kept fixed up to 1986. The labour share

of agricultural self-employment net income is based on the compensation of employees in

the farm sector adjusted for the self-employment ratio in the farm sector. The labour

share of the non-agricultural self-employment net income is based on average wage of

salaried workers multiplied by a scaling factor (largely ad hoc) times non-agricultural self-

employment. The details of this definitions and imputations is discussed further in the

appendix 9. Figure 2(b) shows the two definitions ls and lsukpz . The difference between

the two lines reflects the different imputation methods. The differences are larger than

in the case of France but the trends is similar under both definitions. For the sake of

comparability, the imputation of the self-employment labour income in the UK follows

eq 1. However, the results of the regression analysis carried out in section 5 is reproduced

in appendix 10 using the lsukpz definition.

3 Wavelet analysis

It is well known that macroeconomic time series may show different relationships at dif-

ferent time horizons. Indeed, economic agents pursue different objectives at different time

horizons (frequencies or scales). This has led economists to use spectral tools, such as

the Fourier analysis, to explore relationships between macroeconomic time series across

frequencies. However, the Fourier analysis presents some important limitations. First,

if the spectral analysis is able to identify the main cyclical co-movements in the data it

fails to capture their transient relations and when changes in the cyclical co-movements

occur. This is attributable to the fact that in spectral analysis, data are, by definition,

explored only through the frequency domain; time information of the data are then fully

lost. Second, the spectral analysis is suitable only with stationary time series which is

quite restrictive as most of the macroeconomic time series exhibits non-stationary pat-

terns (Aguiar-Conraria and Soares, 2011; Gençay et al., 2002).

To overcome the limitations of the spectral analysis, some economists proposed to use

instead wavelet tools (for instance Aguiar-Conraria and Soares, 2012; Gallegati and Ram-

sey, 2013; Gallegati et al., 2011; Ramsey et al., 2010). Indeed, wavelet analysis is able

to map all the information of a time series into specific frequencies and time (Aguiar-

Conraria and Soares, 2011; Gençay et al., 2002). The wavelet approach considers two

kinds of wavelet transforms, mapping original time series into functions of time and fre-

quency, that is the continuous and discrete wavelet transforms. The continuous wavelet

transform shows highly redundant information on the data. Thereby, the results obtained

with the continuous wavelet transform offer a clear picture on the co-movements of time

series across time and frequencies. In turn, the discrete wavelet transform does not show

redundant information on the data. Indeed, contrary to the continuous wavelet transform,
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it is computed for only a selection of points on the time-frequency space. Nonetheless, the

discrete wavelet transform can be convenient when one is interested in applying the mul-

tivariate time-domain econometric tools on the transformed time series (Aguiar-Conraria

and Soares, 2011). To gain redundancy from the discrete wavelet transform, one can in-

stead make use of the maximum overlap discrete wavelet transform. The maximum overlap

discrete wavelet transform is a redundant transform (but less than the continuous wavelet

transform) because while it is computed for a selection of frequency points, it considers

every points in time (Aguiar-Conraria and Soares, 2011).

In our empirical work we consider both kinds of wavelet transforms. While we use the

continuous wavelet tools to get a precise description of how labour share relates to growth

across time and frequencies in France, the UK and the US, we use the discrete wavelet

tools to make then our work comparable with the existing literature on inequality and

growth which has usually relied on standard time series econometric methods. Hence, in

the subsequent subsections we introduce in a more formal way the continuous and discrete

wavelet analyses.

3.1 Continuous wavelet analysis

The content of this subsection relies highly on Aguiar-Conraria and Soares (2011), Aguiar-

Conraria and Soares (2012), Grinsted et al. (2004) and Lilly and Olhede (2010).

3.1.1 The mother wavelet function

A mother wavelet is a function of time that spans on the real space, ψ (t) ∈ L2 (R), that

satisfies the following admissibility condition

0 < Cψ :=

∫ ∞
−∞

|Ψ (ω)|
|ω|

dω <∞ (4)

where Cψ is the admissibility condition and Ψ (ω) denotes the Fourier transform, a function

of angular frequency ω. Assuming that ψ (t) is a function with sufficient decay, the previous

admissibility condition (4) can be restated as follows

Ψ (0) =

∫ ∞
−∞

ψ (t) dt = 0. (5)

The assumed decaying property of the mother wavelet function enables the localization in

both time and frequency.
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3.1.2 The continuous wavelet transform

From a mother wavelet function ψ (t), one can get a set ψτ,s (t) of wavelet daughters by

scaling and translating ψ (t)

ψτ,s (t) :=
1

|s|
ψ

(
t− τ
s

)
, s, τ ∈ R, s 6= 0

where s is a parameter that controls the width of the wavelet and τ is a parameter that

controls the location of the wavelet in the time domain. The parameter s, named scale or

dilation parameter, governs the position of the mother wavelet function in the frequency

domain. Taking large scale values, |s| > 1, means that the mother wavelet function is

dilated to capture low frequency features of the data. Instead, taking small scale values,

|s| < 1, means that the mother wavelet function is compressed to capture high frequency

features of the data.

The continuous wavelet transform (CWT) of a time series x (t) is a projection of x (t)

onto a specific mother wavelet function ψ (t)

Wx (τ, s) =

∫ ∞
−∞

x (t)
1

|s|
ψ∗
(
t− τ
s

)
dt (6)

where ∗ denotes the complex conjugate. Under the admissibility condition (5), the CWT

does not alter the energy (variance) of x (t)13.

It is interesting to note that the wavelet transform actually defines a time-scale rep-

resentation rather than a time-frequency representation. Thus, to get a time-frequency

representation one needs to convert scales into angular frequencies ω or into Fourier fre-

quencies f (number of cycles per unit of time) according to the following correspondence

ω (s) =
ωψ
s

f (s) =
ωψ
2πs

(7)

where ωψ denotes a specific frequency to be properly chosen. Researchers have proposed

different rules for calculating ωψ. This means that the (inverse) relation between scales

and frequencies is a matter of interpretation.

3.1.3 The continuous wavelet tools

The (local) wavelet power spectrum of a time series x (t) is defined as follows

WPSx (τ, s) = |Wx (τ, s)|2 (8)

13Henceforth, x (t) can be recovered from its CWT
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It shows how the local variance of x (t) changes across time and scales/frequencies.

The continuous wavelet approach offers as well some interesting tools to analyse how

two time series relate to each other across time and frequencies: the cross wavelet power,

the wavelet coherency and the wavelet phase-difference. Before introducing these cross-

wavelet tools, a definition for a cross-wavelet transform of two time series x (t) and y (t)

is needed

Wx,y (τ, s) = Wx (τ, s)W ∗y (τ, s) (9)

The cross-wavelet power of two time series x (t) and y (t) which is defined as follows

XWPx,y (τ, s) = |Wx,y (τ, s)|

shows how the local covariance between these two time series varies across time and

scales/frequencies. Hence, the cross-wavelet power is a useful tool to identify regions

in the time-scale/frequency space where x (t) and y (t) have high common power.

The wavelet coherency of two time series x (t) and y (t) which is defined as follows

0 ≤ Rx,y (τ, s) =
|S (Wx,y (τ, s))|[

S
(
|Wx (τ, s)|2

)
S
(
|Wy (τ, s)|2

)]1/2 ≤ 1 (10)

shows how the local correlation between these two time series changes across time and

scales/frequencies. S is a smoothing operator in both time and scale.

The phase-difference of two time series x (t) and y (t) which is defined as follows

φx,y (τ, s) = arctan

(
I (Wx,y (τ, s))

R (Wx,y (τ, s))

)
(11)

shows how the causal relationship between these two time series evolves across time and

scales/frequencies14. R (X) and I (X) denote respectively the real and the imaginary

part of X. φx,y (τ, s) = 0 means that x (t) and y (t) move together at the specified time-

frequency (τ, s); when φx,y (τ, s) ∈
(
0, π2

)
x (t) and y (t) are positively correlated (in phase)

with x (t) in the lead; when φx,y (τ, s) ∈
(
−π

2 , 0
)
x (t) and y (t) are again positively corre-

lated (in phase) but with y (t) in the lead; φx,y (τ, s) = π or φx,y (τ, s) = −π mean that

x (t) and y (t) are negatively correlated (in anti-phase); when φx,y (τ, s) ∈
(
π
2 , π

)
x (t) and

y (t) are negatively correlated with y (t) in the lead; and when φx,y (τ, s) ∈
(
−π,−π

2

)
x (t)

and y (t) are again negatively correlated but with x (t) in the lead.

14Sometimes the phase-difference is alternatively defined as follows

φx,y (τ, s) = arctan

(
I (S (Wx,y (τ, s)))

R (S (Wx,y (τ, s)))

)
where the phase-angle is computed from the smoothed cross-wavelet transform instead of the cross-wavelet

transform. The definition used in the main text is more convenient because it is consistent with the

individual phases of the time series.
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3.1.4 The choice of the mother wavelet function

The wavelet literature proposes many kinds of mother wavelet functions with different

characteristics. Thus, it is important to make a choice of the mother wavelet function

according to the aim of the empirical study undertaken. If, as in our case, the research

interest is on the cycles synchronism of several time series one should use a complex-

valued mother wavelet function. Indeed, a complex-valued mother wavelet function is

able to separate the amplitude and phase information of the time series15. Among the

complex-value mother wavelet functions, the analytic mother wavelet functions present

an appealing characteristic16. The associated analytic wavelet transform is able to esti-

mate the instantaneous amplitude and the instantaneous phase of the time series in the

neighbourhood of each point in the time-scale space.

In our work we use one particular analytic mother wavelet function, the Morlet wavelet

function, which is defined as follows

ψω0 (t) =
1√
π
eiω0te−

t2

2 (12)

with ω0 > 517. The Morlet wavelet function is appealing because it has four interesting

properties besides being analytic. First, the different rules for calculating ωψ provide the

same result: f (s) = ω0
2πs . Second, taking ω0 = 6, the correspondence between Fourier

frequencies and scales is highly simplified: f = 6
2πs ≈

1
s . Third, the joint time-frequency

concentration of the Morlet wavelet function is optimal. Fourth, the Morlet wavelet func-

tion offers the best compromise between time and frequency concentration.

3.2 Discrete wavelet analysis

The content of this subsection relies highly on Gençay et al. (2002), Percival and Walden

(2006), Ogden (2012), Ott (2012), Percival (2014).

3.2.1 The multiresolution wavelet analysis

The basic idea of the multiresolution wavelet analysis (MRA) is to decompose a time series

xt into several components with different cycle periodicities:

xt = sJ,t +

J∑
j=1

dj,t, t = 0, . . . , N − 1 (13)

15Information on both amplitude and phase of the time series can be extracted only if the wavelet

transform is actually complex-valued.
16A wavelet function is called analytic if the associated Fourier transform is supported only in R+:

Ψ (ω) = 0 for ω < 0.
17This condition guarantees that the Fourier transform of the Morlet wavelet function is supported only

in R+
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where J denotes the number of scales or multiresolution components to consider. The

component dj,t, named the jth level wavelet detail, represents the change in the time

series xt on a scale of length λj = 2j−1. The component sJ,t, named the Jth level wavelet

smooth, represents the cumulative sum of the changes in the time series xt, that is the

long term changes in xt. The scale levels j can also be interpreted in the time domain. In

particular, dj,t captures the oscillations of xt within a window of
[
2j , 2j+1

]
periods. As well,

sJ,t captures the long term oscillations of xt over more than 2j+1 periods. Those periods

can be measured for instance in days, month, quarters, or years. The MRA is performed

using the discrete wavelet transform or its alternative form, that is the maximal overlap

discrete wavelet transform, which we describe below.

3.2.2 The maximal overlap discrete wavelet transform

The maximal overlap discrete wavelet transform (MODWT) of a time series xt is repre-

sented by the following matrix equation

w =Wx (14)

where x = (x0, x1, · · · , xt, · · · , xN−1)′ is a (N × 1) vector of the observations of xt, w =

(w1,w2, · · · ,wj , ·,wJ ,vJ)′ is the ((J + 1)N × 1) vector of MODWT coefficients, and W
is a ((J + 1)N ×N) matrix defining the MODWT. The elements wj in the vector w are

(N × 1) vectors of wavelet coefficients. The wavelet coefficients in wj characterize the

behavior of x on a scale of length λj = 2j−1. The element vJ in the vector w is the

(N × 1) vector of scaling coefficients. The scaling coefficients in vJ characterize the long

term behavior of x, that is on a scale of length 2λJ = 2J . The matrix W has submatrices

such as

W =


W1

W2
...

WJ

VJ


The (N ×N) submatrices W1,W2, · · · ,WJ are made up of rescaled wavelet filters hj/2

j ,

j = 1, . . . , J , arranged as follows

Wj =
[
h
(1)
j /2j ,h

(2)
j /2j , · · · ,h(N−2)

j /2j ,h
(N−1)
j /2j ,hj/2

j
]′

where vector h
(k)
j is the circularly shifted vector hj by factor k

hj = [hj,N−1, hj,N−2, · · · , hj,1, hj,0]′

h
(1)
j = [hj,0, hj,N−1, hj,N−2, · · · , hj,2, hj,1]′

h
(2)
j = [hj,1, hj,0, hj,N−1, hj,N−2, · · · , hj,3, hj,2]′
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and so on. That is

Wj = 2−j



hj,0 hj,N−1 hj,N−2 hj,N−3 · · · hj,3 hj,2 hj,1
hj,1 hj,0 hj,N−1 hj,N−2 · · · hj,4 hj,3 hj,2
hj,2 hj,1 hj,0 hj,N−1 · · · hj,5 hj,4 hj,3

...
...

...
... · · ·

...
...

...

hj,N−2 hj,N−3 hj,N−4 hj,N−5 · · · hj,1 hj,0 hj,N−1
hj,N−1 hj,N−2 hj,N−3 hj,N−4 · · · hj,2 hj,1 hj,0


(15)

The (N ×N) submatrix V is made up of the rescaled scaling filter gJ/2
J , arranged as

follows

VJ =
[
g
(1)
J /2J , g

(2)
J /2J , · · · , g(N−2)

J /2J , g
(N−1)
J /2J , gJ/2

J
]′

where vector g
(k)
J is the circularly shifted vector gJ by factor k

gJ = [gJ,N−1, gJ,N−2, · · · , gJ,1, gJ,0]′

g
(1)
J = [gJ,0, gJ,N−1, gJ,N−2, · · · , gJ,2, gJ,1]′

g
(2)
J = [gJ,1, gJ,0, gJ,N−1, gJ,N−2, · · · , gJ,3, gJ,2]′

and so on. That is

VJ = 2−J



gJ,0 gJ,N−1 gJ,N−2 gJ,N−3 · · · gJ,3 gJ,2 gJ,1
gJ,1 gJ,0 gJ,N−1 gJ,N−2 · · · gJ,4 gJ,3 gJ,2
gJ,2 gJ,1 gJ,0 gJ,N−1 · · · gJ,5 gJ,4 gJ,3

...
...

...
... · · ·

...
...

...

gJ,N−2 gJ,N−3 gJ,N−4 gJ,N−5 · · · gJ,1 gJ,0 gJ,N−1
gJ,N−1 gJ,N−2 gJ,N−3 gJ,N−4 · · · gJ,2 gJ,1 gJ,0


(16)

Thus, the J+1 MODWT coefficients – wavelet and scaling coefficients – can be obtained

as follows

wj =Wjx, j = 1, . . . , J

vJ = VJx
(17)

The wavelet detail and smooth components of the MRA, dj,t and sJ,t, can be computed

from the MODWT as follows

dj =W ′jwj , j = 1, . . . , J

sJ = V ′JvJ
(18)

with dj = (dj,0, dj,1, . . . , dj,t, . . . , dj,N−1)
′ and sJ = (sJ,0, sJ,1, . . . , sJ,t, . . . , sJ,N−1)

′.
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In practice and for efficiency interest, the MODWT is computed using a pyramid

algorithm implemented in J iterations. In particular the pyramid algorithm does not

construct the matrix W. Instead, it compute the MODWT coefficients using filtering

operations in a cascading way. On each iteration j of the algorithm, the input is filtered

to compute the jth-level wavelet and scaling coefficients, w1 and v1 respectively. In the

first iteration, the input is the vector of data x. In the subsequent iterations j = 2, . . . , J ,

the input is instead the vector of scaling coefficients constructed in the previous iteration

vj−1.

3.2.3 Wavelet and scaling filters

Here, we define the wavelet and scaling filters and present their fundamental properties.

Let the finite real-valued sequence {hl : l = 0, . . . , L− 1} be a wavelet filter of width L ∈
2N. A wavelet filter must have the following properties

L−1∑
l=0

hl = 0

L−1∑
l=0

h2l = 1

L−1∑
l=0

hlhl+2n = 0, ∀n ∈ Z∗

(19)

with hl = 0∀l ∈ Z \ [0, L− 1], h0 6= 0 and hL−1 6= 0. The first property states that

a filter integrates to zero; the second property states that a filter has unit energy; and

the third property states that a filter is orthogonal to its even shifts. Note that L must

be even so that the orthogonality condition can be held. The scaling filter of width L

{gl : l = 0, . . . , L− 1}, also a finite real-valued sequence, is associated to the wavelet filter

as follows

gl = (−1)l+1 hL−1−l, l = 0, . . . , L− 1 (20)

with gl = 0 ∀l ∈ Z \ [0, L− 1]. The scaling filter has the same properties as the wavelet

filter.

The wavelet literature propose several kinds of wavelet filters, among which the most

popular are the Haar wavelet filter and the Daubechies wavelet filters. The Haar wavelet

filter is a filter of width L = 2 and can be defined by its wavelet filter coefficients h0 = 1/
√

2

and h1 = −1/
√

2 or equivalently by its scaling filter coefficients g0 = g1 = 1/
√

2. The

family of Daubechies wavelet filters of width L = 2, 4, 8, 16, . . . can be characterized by the

squared gain function for its scaling filters, denoted G (f) with f the Fourier frequency18.

18The squared gain function of a filter is a tool to capture the frequency domain properties of that filter.
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However, several sequences of scaling filter coefficients of the form {gl : l = 0, . . . , L− 1},
can share the same squared gain function G (f)19. All possible sequences {gl} with the

same G (f) are defined by the transfer function G (f) = [G (f)]1/2 exp (iθ (f)), where θ (f)

is the phase function. The scaling filters can be derived with a procedure called spectral

factorization20. In general the literature focuses on two kinds of spectral factorization. The

first one is called the extremal phase factorization and it defines the extremal phase filters

of width L named D (L)21. The energy (variance) of an extremal phase filter is mainly

concentrated in the start of its impulse response. The extremal phase wavelet filter of

width L = 2, D (2), is identical to the Haar wavelet filter as they both define the same

sequence {hl}. The D (4) is in turn defined by the following wavelet filter coefficients:

h0 = 1−
√
3

4
√
2

, h1 = −3+
√
3

4
√
2

, h2 = 3+
√
3

4
√
2

and h4 = −1−
√
3

4
√
2

. However, the extremal phase

filters of width L > 4 do not have closed-form expressions in the time domain for their

wavelet and scaling coefficients. The second kind of spectral factorization is named least

asymmetric factorization and it defines the least asymmetric filters of width L denoted

by LA (L). This factorization leads to select the most symmetric filter. This is obtained

using a linear phase function θ (f). Note that filters LA (L) and D (L) are identical for

L = 2 L = 4 and L = 6 and differ for L = 8, 10, 12, . . .

Another concept of the filtering theory to introduce is the notion of cascade of filters,

such as

{hj,l : l = 0, · · · , L− 1} j = 1 · · · , J
{gJ,l : l = 0, · · · , L− 1}

(21)

where the sequences {hj,l} and {gJ,l} are called the jth level wavelet filter and the Jth

level scaling filter, respectively. The jth level wavelet filter {hj,l} is derived by convoluting

together the following j filters

filter 1: (g0, g1, · · · , gL−2, gL−1)
filter 2: (g0, 0, g1, 0, · · · , gL−2, 0, gL−1)
filter 3: (g0, 0, 0, 0, g1, 0, 0, 0, · · · , gL−2, 0, 0, 0, gL−1)
...

filter j-1:
(
g0, 0(1×2j−2−1), g1, 0(1×2j−2−1), · · · , gL−2, 0(1×2j−2−1), gL−1

)
filter j:

(
h0, 0(1×2j−1−1), h1, 0(1×2j−1−1), · · · , hL−2, 0(1×2j−1−1), hL−1

)
To get the Jth level scaling filter {gJ,l}, one just needs to replace the h’s by g’s in the

filter j = J above. For instance, with J = 3 and L = 2, the first three levels of wavelet

19The width of the filter L gives the number of the different filters that share the same squared gain

function.
20The procedure spectral factorization is used to compute the roots of |G (f)|. The scaling filter coeffi-

cients are associated to these roots.
21The extremal phase filters are associated to the roots of |G (f)| that are all inside the unit circle.
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filters {hj,l} are calculated as follows

{h1,l} = (h1,0, h1,1)

= (h0, h1)

{h2,l} = (h2,0, h2,1)

= (g0, g1) ∗ (h0, 0, h1)

{h3,l} = (h3,0, h3,1)

= (g0, g1) ∗ (g0, 0, g1) ∗ (h0, 0, 0, 0, h1)

In turn, the 3rd level scaling filter is given by

{g3,l} = (g3,0, g3,1)

= (g0, g1) ∗ (g0, 0, g1) ∗ (g0, 0, 0, 0, g1)

As seen above, the sequences of the jth level wavelet filter {hj,l} and Jth level scaling filter

{gJ,l} are used to form the submatrices defining the MODWT, (15) and (16) respectively.

Note that {hj,l} and {gJ,l} are periodized to length N in (15) and (16).

3.2.4 Practical choices in performing the MODWT

The main practical issue the researcher faces in implementing a wavelet analysis is how

to choose an appropriate wavelet filter. Usually, researchers consider three criteria when

choosing the wavelet filter. The first criterion is the width L of the wavelet filter. In

particular, with a short width (L = 2, 4 or 6), the wavelet filter will be a poor approxima-

tion of an ideal bandpass filter22. In that case, the filter might lead to the construction

of wavelet coefficients that cannot be correctly interpreted. Therefore, the Haar wavelet

filter is usually not an appropriate wavelet filter. Thus, one should go for a wavelet filter

with a large width. However, the larger is L, the larger will be the number of wavelet

coefficients affected by the boundaries (see below). The second criterion is the ability of

the wavelet filter to mimic the key features of the data. It is difficult to meet this criteria

when data display different features over different times and scales. The last criterion

is the property of symmetry in filters. Symmetric filters make it easier to align wavelet

and scaling coefficients with the data on the time dimension. Hence, according to these

criteria, we choose the use the least asymmetric wavelet filter of width 8. Indeed, LA (8)

is a good approximation of an ideal bandpass filter and is nearly symmetric. The width

L = 8 is large enough to get a filter close to the ideal bandpass filter and is small enough

to minimize the number of wavelet coefficients affected by the boundaries.

22An ideal bandpass filter is a filter that preserves the dynamics of the data within a given band of

frequencies.
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The choice of the number of scales to consider is also crucial as it defines the scale level

of the long term oscillations of the time series xt. For instance, if one is interested in long

wave cycles in prices or production such as the Kondratieff cycles (with a duration of 40

to 60 years), using annual data, s/he needs to consider J = 523. However, if one has no

prior on the scale level, s/he can use one of the following rules of thumb

conservative rule of thumb: J = log2

(
N

L− 1
+ 1

)
maximum rule of thumb: J = log2 (N)

supermaximum rule of thumb: J = log2 (1.5N)

where L is the width of the filter. In our empirical work we choose to use the conservative

rule of thumb. Indeed, the size of our dataset is not large enough to use the two other

rules of thumb. In the four countries we have 4 scaling levels. We get the following

frequencies: detail 1: 2-4 annual frequency, detail 2: 4-8 annual frequency, detail 3: 8-16

annual frequency and detail 4: 16-32 annual frequency. The smoothed series is S4 referring

to more than 32 annual frequency.

Another issue in performing the MODWT is the handling of the boundaries. Indeed,

the wavelet transforms are defined on a space of infinite length L2 (R). However, the data,

on which the wavelet transform is applied to, are usually defined in a finite interval I and

therefore have discontinuities at the boundaries of I. Thus, the original data need to be

expanded before being transformed. One way to deal with the interval’s endpoints, is to

assume the data to be periodic24 and to expand the data accordingly. This technique is

called periodic boundary conditions. This assumption is reasonable if the data start and

end on the same level, such as data displaying seasonality. However, if the data are not

truly periodic, the implementation of the wavelet transform on the periodically replicated

data25 might lead to abnormally large wavelet coefficients in the neighborhood of the

boundaries. Another way to deal with the boundary issue is first to expand the data by

reflection26, then to consider the reflected data as being periodic when performing the

wavelet transform. This technique is called the reflection boundary conditions. If the data

are not truly periodic, reflection boundary conditions might be more appropriate than

periodic boundary conditions because the former provide continuity at the boundaries.

Besides, the reflection boundary conditions do not affect the sample mean nor the sample

variance of the original data.

23Gallegati et al. (2014) are currently analyzing the long wave cycles in prices and economic activity

using the wavelet methodology.
24A periodic data is a data that repeats its oscillations after a fixed interval.
25Data are periodically replicated as follows: xt = xt−N ∀t = N + 1, . . . , 2N .
26Data are replicated by reflection as follows: x0, x1, . . . , xN−2, xN−1, xN , xN−1, xN−2, . . . , x1, x0.
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4 Empirical results

Figures 2, 3 and 4 display the power spectrum for growth (upper left corner) and the

labour share (upper right corner) as well as the wavelet coherency (lower left corner) and

the cross-wavelet power (lower right corner).

The power spectrum analysis describes at which period of time and for which frequen-

cies the information is concentrated. The wavelet power spectrum is an energy density (or

variance distribution) in the time-frequency plane. In the upper two plots of Figures 2, 3

and 4, the horizontal axis denotes the time and the vertical axis the scale. The concen-

tration of the information is represented by colors intensity: the warmer colors standing

for higher power. The regions surrounded by a bold line are the region significant at 10%

against the null hypothesis that the data generating process is stationary. The cone of

influence is represented by the shaded area and identifies the region affected by the edge

effects.

The power spectrum analysis for growth (upper right hand corner) has similarities

in the three countries considered. The information is concentrated before World War

II pointing that growth fluctuations have dampened since the second half of the XXth

century. Additionally, power is decreasing with the scale, which can be expected as taking

the growth rate of GDP removes the trend. This description is very relevant for France

and the United-States. The power spectrum of growth in the UK differs slightly to the

extent that information is more evenly concentrated across time and the concentration at

higher frequencies is more pronounced than in France and in the United-States.

[Figure 2 about here.]

Similarly to growth, the power spectrum analysis for the labour share (upper left hand

corner) shows that power declines after World War II. However, there are regions with

high power in the 1970s, which captures the large increase in the labour share that took

place as a result of low unemployment and wage indexation mechanisms. Additionally,

information concentration increases with the scale as illustrated by the red colours that

characterized the detail D3, D4 and the smooth component S4. In the United-States, the

information is less concentrated in large scales as in the other two countries. However, the

power increases across all scales in the decade 2000s.

[Figure 3 about here.]

The purpose of the cross-wavelet power is to analyse the time-frequency dependencies

between two time series. The cross-wavelet power captures the co-variance between two

variables in the time-frequency domain. The wavelet coherency is the cross-wavelet power
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normalized by the power spectrum of both series. The coherency analysis between growth

and the labour share (lower left hand corner) shows that there are strong correlations

at certain point in time at the highest frequencies. The region of significant coherency

expands with the scale to cover the entire period for the smooth component S4. This last

point is less true in the case of the United-States as indicated by the blue colour at the

32 years horizon. Overall the coherency analysis tends to show that there is strong local

correlation between growth and the labour share.

[Figure 4 about here.]

The cross-wavelet power is illustrated in the lower right hand corner. The cross-

wavelet power represents regions of common high power in the time-frequency space.

Contrastingly, the coherency analysis shows significant coherence although the common

power might be low. The cross-wavelet power also represents the relative phase. The

direction in the arrow can be interpreted as follow. An arrow pointing right indicates

that the two variables are in co-movement. The arrow pointing left indicates that the

two variables are in anti-phase. The arrow pointing up indicates that the labour share is

leading growth by 90 degrees; while the arrow pointing down means that the labour share

is lagging growth by 90 degrees.

In France and the UK, in areas characterized by high common power (the red colour in

the figure), the arrows are pointing up indicating that the labour share is leading growth

by 90 degrees. This is especially true at the low frequency S4. The relative phase sheds a

new light on the issue of endogeneity between the labour share and growth. The labour

share leading growth is an indication that the labour share is not endogenous to growth.

However, the relative phase should be interpreted carefully as a lead by 90 degrees could

also mean a lag by 270 degrees. At higher frequencies, the arrows tend to point left in areas

of low common power (in blue) indicating an anti-phase movement between the labour

share and growth. In the United-States, the arrows are pointing down at the 32 years

frequencies, while arrows are pointing left at the 8-16 years and 16-32 years frequencies.

Figure 14 in the appendix reproduce the continuous wavelet analysis for the US using

the Piketty and Zucman (2014) database over the period 1930-2010 and for the definition

of the labour share ls. The power spectrum for growth and the labour share are similar

to those produced with the Groth and Madsen (2013) database. The coherency analysis

differs slightly to the extent that regions with common information are wider using the

Piketty and Zucman (2014) database. The relative phase at low frequencies (16 years and

beyond) displays arrow pointing upwards relative to figure 5(d). An explanation may be

that the number of scale is smaller given the shorter samples.
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5 Regression across time scale

In this section, we explore the relation between functional income distribution and growth

at different frequencies for France 1897-2010, UK 1857-2010 and the US 1899-2010. This

section makes use of discrete wavelet transform rather than continuous wavelet transform

as presented in section ??.

[Figure 5 about here.]

Figures 5, 6 and 7 display the outcome of the wavelet analysis for growth (the blue

line) and the labour share (the red line) for each frequencies and for each countries. To

simplify the presentation, the highest frequency D1 is excluded from the figure (but is

available upon request). In each country, visual inspection tends to show that at highest

frequencies D2, growth and the labour share are in anti-phase. However, when the scaling

level increases the two series seem to become gradually in-phase with the labour share

leading growth. This visual impression must be confirmed by more elaborate statistical

tests.

[Figure 6 about here.]

It is interesting to look at the long term trend in the labour share through the smoothed

series S4. In the case of France, the smoothed series of the labour share declines from 1896

to the mid 1920’s. The labour share then increases through both the Great Depression and

World War II. The labour share reaches a maximum of 82%. It then declines gradually

with the exception of the large bump in the 1970s. In the case of the United-Kingdom, the

smooth component of the labour share increases between 1870 and 1890 and subsequently

declines until 1910. World War I marks the beginning of an increase in the labour share

that lasts until the early 1980s. The labour share is on a declining trend since then. In

the United-States, the labour share declines until the 1930s and reaches a pick in the

aftermath of World War II. The labour share then stabilizes around 64% until the late

1970s before to follow a continuous decline until the Great Recession.

[Figure 7 about here.]

Correlations are illustrated in Table 1 showing that the sign associated with the labour

share and growth is negative at the frequencies D1 to D4 and then turn positive in the

long run S4. Small differences exist across countries. The sign of the correlation is not

significant at the frequencies D3 and D4 in France. In the UK, the sign is positive in

S4 but not significant. The correlations tends to confirm the visual inspection described

above, which points to a change in the relation between growth and the labour share across
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frequencies. In the Appendix, Table 4 displays similar correlation for the lspz labour share

definition in France and the United-Kingdom. The table also displays the correlation using

both the ls and lspz definition using the Piketty and Zucman (2014) database for the US

over the period 1930-2010. The results confirm that the sign of the correlation changes

at high and low frequencies from negative to positive. The change of definition hardly

impact the correlation in France. In the UK, the correlation associated with the smoothed

component S4 is positive and significant, while the same coefficient is no longer significant

in the US.

[Table 1 about here.]

We further explore the relation between functional income distribution and growth us-

ing LOESS methods.27. LOESS fits the data using localized subsets of the data. LOESS

assesses the relation between two variables using a locally weighted polynomial regression.

It therefore gives us information on the non-linear relation between growth and distribu-

tion. Figures 11, 12 and 13 display the labour share on the horizontal axis and growth on

the vertical axis as well as the LOESS curve fit for each time scale in France, the UK and

the US respectively.

[Figure 8 about here.]

The LOESS fit confirms the signs of the correlation and explains why some correlations

were not statistically different from zero. In France, the negative signs at D1 and D2 and

the positive sign at S4 appear clearly. At D3 and D4 the relation seems to be non-linear:

overall positive but with some negative sections. In the UK, the relation between growth

and the labour share appears almost linear at D1 and D4, while the relation is non-linear at

D2, D3 and S4. The strong non-linearity at S4 may explain why the sign of the correlation

is not significant in the long-run. In the US, the LOESS fits confirm the signs given by the

correlation. The relation appears to be quite linear across frequencies. Interestingly, at

frequency S4 the positive relation between the two variables seems to be taking place after

World War II. The non-linearities are further explored below performing rolling window

regressions in section 6.

[Figure 9 about here.]

[Figure 10 about here.]

We complement the correlation and the LOESS fit by performing the regression de-

scribed in eq 22. The dependent variable is the growth rate of real GDP per capita and the

27LOESS stands for locally weighted scatter plot smoothing Cleveland (1979)
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independent variable is the labour share of income. This regression is performed for each

time scale j = [D1, D2, D3, D4, S4]. Regressions using wavelets differ from regressions with

time series. The objective is not to fit as well as possible raw data but to show whether the

sign of the relation changes cross time scales. It follows that the lagged dependent variable

is not added as a regressor. The details and smooth components are sinusoid functions

that display strong auto-correlation especially at low frequencies. A lagged dependent

variable as a regressor would appear strongly significant and may overshadow the relation

existing with other explanatory variables. In the absence of a lagged dependent variable

the R2 is mechanically lower.

Eq 22 is likely to have auto-correlated errors especially at low frequency since the

wavelet analysis uses a combination of sinusoid functions. Auto-correlation in the residual

generates a non-consistent estimate of the variance of the OLS estimates. To overcome

this issue, Eq 22 is estimated using an OLS regression with heteroscedastic and auto-

correlation consistent estimator (HAC). The HAC estimator adjusts the covariance matrix

by applying weight to account for auto-correlation. The HAC estimator in this paper uses

pre-whitening of the error term and the weights are chosen following Newey and West

(1987).

∆yj,t = αj + β̂jωj,t + εj,t (22)

The independent variable enters the regression contemporaneously. As indicated by

the relative phase, the labour share is a leading indicator of growth in the areas of common

power. This may be interpreted as pointing that endogeneity is not an issue when estimat-

ing eq 22 at t. Additionally, wavelet analysis greatly reduces the problem of endogeneity

as the filtered series can be viewed as an instrumental variable of the original series (see

Ramsey et al. (2010) for a discussion of the properties of wavelet). A second motivation is

that using annual data it seems realistic to assume that the impact of changes in labour

income affects growth within a year.

[Table 2 about here.]

The regressions results for France, the UK and the US are displayed in Table 2. Across

the three countries, the regressions confirm that the sign of the relation between growth

and the labour share changes across frequencies from negative at high frequencies to pos-

itive at low frequencies. At each country level, the coefficient estimated is in line with the

correlation presented above. In France, the sign associated with the labour share is nega-

tive at the frequency D1 and D2, not significant at frequencies D3 and D4 and positive and

significant at frequency S4. The coefficient is increasing with the scale considered from

−1.4, to −0.4 and 0.03. In the UK, the sign associated with the labour share is negative
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from D1 to D4 and not significant for S4. Similarly to France, the coefficient increases

with the time scale considered from -1.3, -0.4, -0.3 and -0.2. In the US, the labour share

has a negative impact on growth at frequencies D1 to D4 the sign turning positive at

frequency S4. Here as well the sign increases with the scale considered to the exception

of D4. In the Appendix, Table 5 presents sensitivity analysis with respect to alternative

labour share definitions, data source and year coverage. Results are only affected at the

margin. In France, the results are identical regardless of the definition chosen. In the UK,

only the coefficients associated with D3 and D4 are significant (the p-values for D1 and

D2 are just above 10%), while in the US the coefficient using the smoothed series S4 is

not significant anymore.

[Table 3 about here.]

Table 3 displays of the estimation of eq 22 augmented with dummies for World War

I and World War II. Controlling for World Wars is necessary as economic structure have

been deeply affected by both events. In particular, figure 1 shows that the labour share

tends to get closer to unity during war periods. The main result is that adding dummies

does not modify the results described above. The slight difference concerns France for

which the coefficients using component D3 and D4 are now positive and significant, while

they were not significantly different from zero previously. The coefficients using component

D3 and D4 are still positive and significant when substituting the definition lspz for ls in

Table 6 in the Appendix. The coefficient turns positive and significant in the UK for the

smoothed component S4 under the definition lspz when dummies are included.

6 Stability of the relation over time

The advantage of using historical data is that it allows to perform single country estima-

tion, while existing studies using data from the 1970s rely on pooled estimations. The

shortcoming of using historical data is that the sign of the relation may change over time

as the countries considered have experienced profound changes over the past 100 years.

The instability of the relation over time may also explain some of the results described in

the previous section as for instance the non-significant coefficient for the frequency S4 in

the UK. This section studies whether the relation between functional income distribution

and growth has changed over time by using both rolling window correlations and rolling

window regressions for the smoothed component S4. Figure 11 displays the 50 years rolling

window correlation for France, the UK and the US.

[Figure 11 about here.]
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In France, the rolling window correlation is positive for most of the sample. The

correlation declines to become negative over the window 1940-1990. This change in the sign

of the relation may be related to the 1970s which where characterized by full employment,

wage indexation and inflationary expectations. In the UK, the correlation is negative

over the second half of the XIXth century before turning positive in the first half of the

XXth century. The correlation then changes sign again twice: negative after World War

II and positive in last part of the time series. In the US, the rolling correlation are not

significantly different from zero in the first half of the XXth century. The correlations

are then negative reaching a low point for the window 1935-1985. The correlation then

increases and turns positive beyond the window 1945-1995.

[Figure 12 about here.]

In order to better capture the instability in the relation between the labour share and

growth, we perform the estimation described in eq 22 using 75 years rolling window as well

as 100 years rolling window. The results are described in Figures 13(a), 13(b) and 13(c).

In France, the 75 years rolling window estimation shows a positive coefficient comprised

between 0.3 and 0.44. The coefficient is quite stable around 0.3 for the 100 years rolling

window correlation. For both windows the coefficient is significantly different from zero.

In the US, the coefficient fluctuates between 0.05 and 0.25 for the 75 years window and

between 0.1 and 0.25 for the 100 years window. Contrastingly to France, the coefficients are

not significant at the beginning of the sample. Lastly, in the UK the coefficient associated

with the labour share is negative and significant when regressions are performed using

data for the XIXth and early XXth centuries. The coefficient then turns positive and

significant. This may explain that the coefficient is not significant for S4 in the regression

using the entire sample presented in Table 2. A last interesting point is that the sign

associated with the labour share is positive and increasing after World Ward II in all three

countries. This section illustrates that a second advantage of using historical data is that

the impact of income distribution on growth has changed over time. In the Appendix,

Figure 15 displays the rolling window regression for alternative labour share definition.

In France and the UK, the rolling regression are reproduced using the lspz definition for

both windows (75 years and 100 years). For the US, 50 years rolling window regressions

are performed using the ls and lspz definition of the Piketty and Zucman (2014) database

over the period 1931-2010. The results described in Figure 12 are robust to a change in

the labour share definition. A slight difference concerns the UK for which the coefficient

is always positive for the lspzu definition and applying the 100 years windows. For the

US, the coefficient associated with the labour share was not significant over the period

1930-2010 at the S4 frequency as displayed in Table 5. The rolling window regression

shows that the coefficient is negative over the beginning of the period and is then turning

positive in more recent year. Overall, it appears that regardless of the country and the
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labour share definition considered, the impact of the labour share on growth tends to be

positive and increasing in size when estimated on the most recent data.

7 Conclusion

This paper addresses the question of the link between factor shares and growth. The

attempt is to combine a new source of information that constitutes labour share mea-

sures over a long period of time with a new methodology the wavelet analysis. This new

data source, which provides time series of roughly a 100 points (and more) enable to run

single country estimation while existing papers rely exclusively on pooled data. The time-

frequency analysis shades a new light on economic relation as it tests for the sign of the

effect across frequencies.

The time frequency analysis shows that there are large regions of common information

between growth and the labour share especially at low frequencies. Additionally, the labour

share tends to lead growth by 90 degree in the medium to long run. This is especially true

in France and in the United-Kingdom.

The correlation and regression analysis point to changing signs of the relationship

between functional income distribution and growth at different frequencies from negative

in the short and medium run to positive in the long run. This result is consistent across

countries, across specifications and across labour share’s definitions. Lastly, rolling window

regression using the low frequency component indicates that the sign of the coefficient

associated with the labour share is increasing when using more recent data. In the United-

Kingdom, this means that the sign of the coefficient becomes positive and significant when

excluding the XIXth century data.

This leaves open the question of the interpretation of the results. While the negative

sign at the business cycle frequency is consistent with a DSGE model with search and

matching in the labour market for instance, it is more challenging to account for the

positive sign in the longer run. This result is consistent with the model by Kumhof et al.

(2015) in which lower labour income produces a Minsky moment over a 50 years horizon.

An alternative interpretation would be a growth model where human capital accumulation

depends on labour income.
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Appendix 8

9 Self-employment imputation for the U.K.

This appendix shortly details the computation of self-employment income in Piketty and

Zucman for the U.K.. cehh is wages and social contributions paid by non-corporate business

(and households). According to PZ (2014): ”No decomposition of wage payment by non-

corporate vs corporate business is available in BB series 1948-1986 (nor in Martin) nor

in Feinstein 1855-1948; the decomposition given here is based upon the assumption of

a fixed ratio between wage payments by non-corporate businesses and mixed income of

non-corporate businesses. Ideally we would like to know the number of wage-earners in

the non-corporate business sector vs. in the corporte business sector, but this info does

not appear to be available (neither in Mitchell 1988, nor in MFOS 1982)”. cehh is then

computed as follow:

cehh =gmihh ∗
wnc
gmihh

with gmihh: gross mixed income (self-employment), wnc: non-corp. wage. wnc is largely

imputed. According to PZ (2014): ”From 1876 to 1986 we keep this fixed to the 1987

value (55%). From 1855 to 1875 we assume a gradual declines from 90% to 55%, which

is consistent with roughly stable factor shares in the corporate sector (keeping the 55%

share fixed through to 1855 would result in too little wages in the non-corporate sector

and too much in the corporate sector)”

The labor share of agricultural self-employment net income cesea is computed as follow:

cesea =
cefarm

n%farm ∗ n
n%sefarm ∗ n
(ndp+ nfi)

with cefarm: farm wages (Wages and social contributions paid by farm sector), n%farm:

farm salaried workers (% total employed population) , n: employed population, n%sefarm:

farm self-employed workers (% total employed population), ndp: net domestic product

and nfi: net foreign income.

The labor share of non-agricultural self-employment net income cesena is defined as

follow:

cesena =w%
sena ∗ wees

n%senfarmn

(ndp+ nfi)
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with w%
sena: imputed wage of non-agricultural self-employed workers (in percent), wees:

average wage of salaried workers , n%senfarm: non-farm self-employed workers (% total

employed population).

w%
sena is assumed to start from 50 percent in 1855 and to increase gradually to 100

percent in 1885. Average wage of salaried workers is defined as wees =
cec+cehh+ceg

n∗n%
ees

1000.

Salaried workers n%ees is defined as n%ees = 1 − n%se = 1 − (n%sefarm + n%senfarm) = 1 −
( nsea
neesa

nfarm + n%senfarm). nsea
neesa

is assumed 30% in 1855 and increasing up to 72% in 1965

and then decline to 68% in 1973. The source is MFOS 1982 p.170. nfarm is total farm

employment (imputed from Mitchell 2003).

10 Alternative labour share definition and time coverage

This appendix section presents results using alternative definitions of the labour share

(lspz) in France and the UK. This section also reproduce the results for the US using the

Piketty and Zucman (2014) data between 1930 and 2010.

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]
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Figures

Figure 1: The labour share of income
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(b) UK

in
 p

er
ce

nt
ag

e

1900 1920 1940 1960 1980 2000

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85 ls

ls_pz
ls_gm

(c) USA

Year

in
 p

er
ce

nt
ag

e

1900 1920 1940 1960 1980 2000

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

ls
ls_se1
ls_se2

(d) Alternative self-employment adj. (FR)

These figures display the different labour share definitions in the three countries considered. The
figure in the lower right hand corner displays different imputation of self-employment labour income
in the case of France.
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Figure 2: FR: Wavelet analysis
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(b) Power spectrum: labour share
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(c) Wavelet coherency (d) Cross wavelet power

The four figures display time on the horizontal axis and frequencies (in years) on the vertical
axis. The wavelet power spectrum is an energy density (or variance distribution) in the time-
frequency plane. The cross-wavelet power captures the co-variance between two variables in the
time-frequency domain. The wavelet coherency is the cross-wavelet power normalized by the power
spectrum of both series. The warmer colors stand for high power, or high coherency. An arrow
pointing right (left) means that both series are in (anti) phase. An arrow pointing up(down) means
that labour share is leading(lagging) growth by 90 degrees.
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Figure 3: UK: Wavelet analysis
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(c) Wavelet coherency (d) Cross wavelet power

The four figures display time on the horizontal axis and frequencies (in years) on the vertical
axis. The wavelet power spectrum is an energy density (or variance distribution) in the time-
frequency plane. The cross-wavelet power captures the co-variance between two variables in the
time-frequency domain. The wavelet coherency is the cross-wavelet power normalized by the power
spectrum of both series. The warmer colors stand for high power, or high coherency. An arrow
pointing right (left) means that both series are in (anti) phase. An arrow pointing up(down) means
that labour share is leading(lagging) growth by 90 degrees.
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Figure 4: US: Wavelet analysis
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The four figures display time on the horizontal axis and frequencies (in years) on the vertical
axis. The wavelet power spectrum is an energy density (or variance distribution) in the time-
frequency plane. The cross-wavelet power captures the co-variance between two variables in the
time-frequency domain. The wavelet coherency is the cross-wavelet power normalized by the power
spectrum of both series. The warmer colors stand for high power, or high coherency. An arrow
pointing right (left) means that both series are in (anti) phase. An arrow pointing up(down) means
that labour share is leading(lagging) growth by 90 degrees.
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Figure 5: Discret wavelet analysis of the labour share in France
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This figure displays the discrete wavelet filter for labour share (ls) and growth for the following
frequencies: D2 4-8 years, D3 8-16 years, D4 16-32 years and S4 Beyond 32 years. The highest
frequency D1 2-4 years is not displayed for presentation purpose.
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Figure 6: Discret wavelet analysis of the labour share in UK
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This figure displays the discrete wavelet filter for labour share (ls) and growth for the following
frequencies: D2 4-8 years, D3 8-16 years, D4 16-32 years and S4 Beyond 32 years. The highest
frequency D1 2-4 years is not displayed for presentation purpose.

40



Figure 7: Discret wavelet analysis of the labour share in United-States
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This figure displays the discrete wavelet filter for labour share (lsgm) and growth for the following
frequencies: D2 4-8 years, D3 8-16 years, D4 16-32 years and S4 Beyond 32 years. The highest
frequency D1 2-4 years is not displayed for presentation purpose.
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Figure 8: LOESS fit in France
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This figure displays the labour share (ls) on the horizontal axis and growth on the vertical axis.
The blue line corresponds to the LOESS fit. Each subfigure corresponds to a given frequency: D1

2-4 years, D2 4-8 years, D3 8-16 years, D4 16-32 years and S4 Beyond 32 years.

42



Figure 9: LOESS fit in UK
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S4:beyond 32 years frequency

This figure displays the labour share (ls) on the horizontal axis and growth on the vertical axis.
The blue line corresponds to the LOESS fit. Each subfigure corresponds to a given frequency: D1

2-4 years, D2 4-8 years, D3 8-16 years, D4 16-32 years and S4 Beyond 32 years.
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Figure 10: LOESS fit in US
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S4:beyond 32 years frequency

This figure displays the labour share (lsgm) on the horizontal axis and growth on the vertical axis.
The blue line corresponds to the LOESS fit. Each subfigure corresponds to a given frequency: D1

2-4 years, D2 4-8 years, D3 8-16 years, D4 16-32 years and S4 Beyond 32 years.
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Figure 11: 50 years - Rolling correlation - S4
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These figures display the 50 years rolling window correlation for France, the UK and the USA
using the smoothed component S4. The dashed line is the zero line. The horizontal axis displays
the median year of the period over which the correlation is performed.
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Figure 12: Rolling regression 100 years and 75 years window OLS HAC - S4
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(c) USA

These figures display the 100 years and 75 years rolling window regression for France, the UK and
the USA using the smoothed component S4. The estimation method is OLS-HAC. The definition
of the labour share used are ls for France and the UK and lsgm for the USA. The dashed line is
the zero line. The horizontal axis displays the median year of the period over which the regression
is performed.
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Figure 13: Discret wavelet analysis of the labour share in United-States - 1930-2010
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This figure displays the discrete wavelet filter for labour share (ls) and growth for the following
frequencies: D1 2-4 years, D2 4-8 years, D3 8-16 years and S3 Beyond 16 years. As the number of
points is smaller there is one less frequency than in Figure7. The data source for the labour share
is Piketty and Zucman (2014).
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Figure 14: Continuous wavelet analysis of the labour share in United-States - 1930-2010
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(c) Wavelet coherency (d) Cross wavelet power

The four figures display time on the horizontal axis and frequencies (in years) on the vertical
axis. The wavelet power spectrum is an energy density (or variance distribution) in the time-
frequency plane. The cross-wavelet power captures the co-variance between two variables in the
time-frequency domain. The wavelet coherency is the cross-wavelet power normalized by the power
spectrum of both series. The warmer colors stand for high power, or high coherency. An arrow
pointing right (left) means that both series are in (anti) phase. An arrow pointing up(down) means
that labour share is leading(lagging) growth by 90 degrees. The data source is Piketty and Zucman
(2014) and the labour share definition is ls.
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Figure 15: Rolling regression - S4 - OLS HAC
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(c) USA

This figure displays the rolling window regression using alternative labour share definition for
the smoothed component S4. The labour share definition is lspz in France and the UK. The
regression’s results are displayed for both a 75 years window and a 100 years window. The labour
share definition are both ls and lspz for the USA using the Piketty and Zucman (2014) over the
period 1931-2010. In the USA a single 50 years window is used. The estimation method is OLS-
HAC. The dashed line is the zero line. The horizontal axis displays the median year of the period
over which the regression is performed.
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Tables

Table 1: Correlation by frequency scale

FR UK US
1897-2010 1856-2010 1899-2010

definition ls lsgm
D1 -0.40*** -0.48*** -0.24**
D2 -0.29*** -0.29*** -0.36***
D3 0.13 -0.47*** -0.37***
D4 0.03 -0.30*** -0.45***
S4 0.60*** 0.11 0.34***
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Table 2: Regression across frequencies

Dependent variable ∆yj,t
Estimation method - HAC OLS

France
Year coverage 1898-2010

Labour share definition ls
D1 D2 D3 D4 S4 Raw data

cst 0.000 0.000 0.000 0.000 −0.213∗∗∗ −0.003
(0.002) (0.003) (0.010) (0.004) (0.075) (0.154)

ωt −1.446∗∗∗ −0.422∗∗∗ 0.155 0.020 0.299∗∗∗ 0.027
(0.295) (0.107) (0.177) (0.128) (0.108) (0.205)

R2 0.165 0.075 0.017 0.01 0.366 0
N. obs. 113 113 113 113 113 113

U.K.
Year coverage 1857-2010

Labour share definition ls
D1 D2 D3 D4 S4 Raw data

cst 0.000 0.000 0.000 0.000 0.006 0.102∗∗

(0.000) (0.003) (0.003) (0.005) (0.033) (0.049)
ωt −1.263∗∗ −0.421∗∗ −0.327∗∗∗ −0.169∗∗ 0.013 −0.117∗

(0.592) (0.213) (0.123) (0.083) (0.050) (0.064)

R2 0.23 0.08 0.217 0.11 0.005 0.029
N. obs. 154 154 154 154 154 154

United-States
Year coverage 1899-2010

Labour share definition lsgm
D1 D2 D3 D4 S4 Raw data

cst 0.000 0.000 0.000 0.000 −0.135∗∗∗ 0.349
(0.002) (0.002) (0.001) (0.001) (0.041) (0.242)

ωt −1.439∗∗ −1.427∗∗∗ −0.937∗∗∗ −2.192∗∗∗ 0.245∗∗∗ −0.516
(0.550) (0.357) (0.226) (0.419) (0.064) (0.382)

R2 0.06 0.13 0.13 0.20 0.11 0.033
N. obs. 112 112 112 112 112 112
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table presents the regressions results across each time scale and for each country. The table
also presents the regression results using raw data for comparison. The equation estimated is eq 22.
The estimation method is HAC-OLS. The weights follows Newey-West
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Table 3: Regression across frequencies with dummies for World Wars I and II

Dependent variable ∆yj,t
Estimation method - HAC OLS

France
Year coverage 1898-2010

Labour share definition ls
D1 D2 D3 D4 S4

Intercept −0.001 0.001 0.003 0.002 −0.257∗∗∗

(0.004) (0.002) (0.002) (0.001) (0.029)
ωt −1.461∗∗∗ −0.417∗∗∗ 0.229∗∗ 0.161∗∗ 0.356∗∗∗

(0.315) (0.144) (0.105) (0.069) (0.038)
DWWI 0.000 0.000 −0.014 −0.012∗∗ 0.012∗

(0.019) (0.010) (0.010) (0.006) (0.006)
DWWII 0.013 −0.007 −0.038∗∗∗ −0.019∗∗∗ −0.020∗∗∗

(0.016) (0.008) (0.008) (0.005) (0.005)

R2 0.147 0.056 0.171 0.108 0.441
Num. obs. 113 113 113 113 113

U.K.
Year coverage 1857-2010

Labour share definition ls
D1 D2 D3 D4 S4

Intercept 0.000 0.000 0.000 0.000 0.007
(0.002) (0.001) (0.001) (0.001) (0.010)

ωt −1.269∗∗∗ −0.424∗∗∗ −0.377∗∗∗ −0.199∗∗∗ 0.011
(0.187) (0.117) (0.055) (0.043) (0.014)

DWWI 0.003 −0.002 −0.012∗∗ −0.002 −0.012∗∗∗

(0.008) (0.008) (0.005) (0.003) (0.003)
DWWII −0.001 −0.001 0.002 −0.004∗ 0.002

(0.007) (0.007) (0.004) (0.002) (0.003)

R2 0.219 0.062 0.236 0.113 0.081
Num. obs. 154 154 154 154 154

United-States
Year coverage 1899-2010

Labour share definition lsgm
D1 D2 D3 D4 S4

ωt −1.451∗∗ −1.448∗∗∗ −0.987∗∗∗ −2.320∗∗∗ 0.258∗∗∗

(0.557) (0.358) (0.222) (0.351) (0.051)
DWWI −0.001 0.010 0.004 0.015∗∗∗ −0.014∗∗∗

(0.012) (0.010) (0.007) (0.005) (0.003)
DWWII 0.008 0.007 0.018∗∗∗ 0.029∗∗∗ 0.018∗∗∗

(0.010) (0.009) (0.006) (0.004) (0.003)

R2 0.038 0.116 0.175 0.455 0.455
Num. obs. 112 112 112 112 112
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table presents the regressions results across each time scale and for each country. The equation
estimated is eq 22 augmented with dummies for World War I and II. The estimation method is
HAC-OLS. The weights follows Newey-West.
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Table 4: Correlations by frequency scale using alternative definition and year coverage

Country FR UK US
Labour share definition lspz ls lspz
Year coverage 1897-2010 1856-2010 1930-2010 1930-2010

D1 -0.42*** -0.34*** -0.65*** -0.67***
D2 -0.29*** -0.16* -0.79*** -0.79***
D3 0.09 -0.44*** -0.30*** -0.28**
D4 0.08 -0.54*** -0.71*** -0.68***
S4 0.61*** 0.45*** -0.13 -0.09
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Table 5: Regression across frequencies

Dependent variable ∆yj,t
Estimation method - HAC OLS

France
Labour share definition lspz

Year coverage 1898-2010

D1 D2 D3 D4 S4
cst 0.000 0.000 0.000 0.000 −0.186∗∗∗

(0.002) (0.003) (0.010) (0.004) (0.053)
ωt −1.543∗∗∗ −0.451∗∗∗ 0.100 0.052 0.266∗∗∗

(0.328) (0.106) (0.172) (0.116) (0.082)

R2 0.179 0.076 0.008 0.007 0.376
N. obs. 113 113 113 113 113

UK
Labour share definition lspz

Year coverage 1857-2010
D1 D2 D3 D4 S4

cst 0.000 0.000 0.000 0.000 −0.019
(0.000) (0.003) (0.002) (0.006) (0.144)

ωt −1.270 −0.322 −0.377∗∗∗ −0.277∗∗ 0.047
(0.858) (0.250) (0.103) (0.135) (0.220)

R2 0.120 0.024 0.197 0.307 0.230
N. obs. 154 154 154 154 154

United-States
Labour share definition ls
Year coverage 1931-2010

D1 D2 D3 D4 S4
cst 0.000 0.001 0.001 0.001 0.059

(0.002) (0.001) (0.002) (0.002) (0.042)
ωt −2.773∗∗∗ −1.597∗∗∗ −0.859∗∗∗ −1.970∗∗∗ −0.049

(0.366) (0.134) (0.201) (0.235) (0.055)

R2 0.43 0.65 0.19 0.48 0.01
N. obs. 78 78 78 78 78
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table presents the regressions results across each time scale and for each country using alter-
native labour share definition for France and the UK (ls). For the US, the data source is Piketty
and Zucman (2014). The equation estimated is eq 22. The estimation method is HAC-OLS. The
weights follows Newey-West.
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Table 6: Regression across frequencies with dummies for World Wars I and II

Dependent variable ∆yj,t
Estimation method - HAC OLS

France
Labour share definition lspz

Year coverage 1898-2010

D1 D2 D3 D4 S4
Intercept −0.001 0.001 0.003 0.002 −0.226∗∗∗

(0.004) (0.002) (0.002) (0.001) (0.025)
ωt −1.561∗∗∗ −0.445∗∗∗ 0.174∗ 0.186∗∗∗ 0.321∗∗∗

(0.320) (0.153) (0.101) (0.063) (0.033)
DWWI 0.001 0.000 −0.012 −0.012∗∗ 0.014∗∗

(0.019) (0.010) (0.010) (0.006) (0.006)
DWWII 0.013 −0.007 −0.038∗∗∗ −0.020∗∗∗ −0.020∗∗∗

(0.016) (0.008) (0.008) (0.005) (0.005)

R2 0.162 0.057 0.158 0.132 0.456
Num. obs. 113 113 113 113 113

UK
Labour share definition lspz

Year coverage 1857-2010
D1 D2 D3 D4 S4

Intercept 0.000 0.000 0.000 0.000 −0.016∗∗∗

(0.002) (0.001) (0.001) (0.000) (0.005)
ωt −1.273∗∗∗ −0.322∗ −0.388∗∗∗ −0.277∗∗∗ 0.043∗∗∗

(0.283) (0.169) (0.063) (0.034) (0.007)
DWWI 0.001 0.000 −0.005 0.001 −0.010∗∗∗

(0.009) (0.008) (0.004) (0.002) (0.003)
DWWII −0.001 −0.001 0.005 −0.002 0.001

(0.007) (0.007) (0.004) (0.002) (0.002)

R2 0.102 0.004 0.197 0.297 0.278
Num. obs. 154 154 154 154 154

United-States
Labour share definition ls
Year coverage 1931-2010

D1 D2 D3 D4 S4
Intercept 0.000 0.000 0.001 −0.001 0.038

(0.002) (0.001) (0.002) (0.002) (0.038)
ωt −2.755∗∗∗ −1.594∗∗∗ −0.831∗∗∗ −1.538∗∗∗ −0.024

(0.368) (0.134) (0.210) (0.256) (0.049)
DWWII 0.004 0.004 0.003 0.021∗∗∗ 0.010∗∗∗

(0.006) (0.005) (0.007) (0.006) (0.002)

R2 0.419 0.646 0.175 0.535 0.206
Num. obs. 78 78 78 78 78
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table presents the regressions results across each time scale and for each country using alter-
native labour share definition for France and the UK (ls). For the US, the data source is Piketty
and Zucman (2014). The equation estimated is eq 22 augmented with dummies for World War I
and II. The estimation method is HAC-OLS. The weights follows Newey-West.
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