BIOGAS
Energy and nutrient solutions

Sari Luostarinen
WP leader - Manure Energy Use

Principle Research Scientist, PhD
MTT Agrifood Research Finland

The project is partly financed by the European Union European Regional Development Fund
GABBS 2013, Helsinki, Finland
Acknowledgements

This work was only possible because of the following excellent colleagues:

- Mats Edström, Mikael Hansson, Henrik Olsson, Johan Anderson, Andras Baky – JTI, Sweden
- Karola Elberg, Andrea Schüch – Rostock University, Germany
- Ksawery Kuligowski, Dorota Skura, Marek Ziółkowski, Andrzej Tonderski – Pomcert, Poland
- Sigitas Lazauskas, Virmantas Povilaitis, Vita Tilvikiene – LAMMC, Lithuania
- Valters Kazulis, Arvids Celms, Vilis Dubrovskis – LLU, Latvia
- Argo Normak, Tauno Trink, Ahto Oja – EMU, Estonia
- Saija Rasi, Sanna Marttinen, Ville Pyykönen, Eeva Lehtonen – MTT, Finland
- Knud Tybirk – ABP, Denmark
Biogas technology...

- makes use of microbiological degradation of organic materials, such as manure, in anaerobic, closed digesters
- produces two end-products
 - Energy-rich biogas (methane + carbon dioxide)
 - Nutrient-rich digestate (more soluble nitrogen)
- enables mitigation of emissions from manure with other proper choices
- can be designed for different scales from farms to large plants

Photos: Sari Luostarinen / MTT

The project is partly financed by the European Union European Regional Development Fund GABBS 2013, Helsinki, Finland
• Undegraded organic matter in manure can be turned into biogas
• Different manures have different energy content
Biogas from manure - energy (2)

- Energy yield of manure based biogas can be increased with suitable co-substrates

The project is partly financed by the European Union Regional Development Fund.
Biogas from manure – Nutrients and emissions

• Nutrients are preserved during digestion
 • Organic nitrogen mineralised into soluble and readily plant-available ammonium
 • Possibility to recycle also nutrients from other organic materials (co-substrates)
• Direct GHG emissions from manure can be reduced
 • Also reduction of GHGs by replacing fossil energy
• Ammonia emissions and nutrient run-off can be reduced

• TO ACHIEVE ALL THESE GOOD EFFECTS, THE WHOLE MANURE MANAGEMENT CHAIN MUST BE OPTIMISED
 – Quick collection from barn
 – Sufficient retention time in digester
 – Post-digestion
 – Covered storage
 – Optimal timing and method for digestate spreading
 – Optimal dose of digestate as fertiliser
Manure energy potential in the BSR

<table>
<thead>
<tr>
<th>Country</th>
<th>Manure (t/a)</th>
<th>Theoretical EP</th>
<th>Techno-economical EP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min (TWh/a)</td>
<td>Max (TWh/a)</td>
</tr>
<tr>
<td>Finland</td>
<td>13 543 967</td>
<td>2.41</td>
<td>5.20</td>
</tr>
<tr>
<td>Sweden</td>
<td>21 743 000</td>
<td>3.38</td>
<td>7.04</td>
</tr>
<tr>
<td>Denmark</td>
<td>34 395 100</td>
<td>4.38</td>
<td>9.13</td>
</tr>
<tr>
<td>Germany*</td>
<td>23 765 348</td>
<td>2.95</td>
<td>6.16</td>
</tr>
<tr>
<td>Poland</td>
<td>69 775 669</td>
<td>20.0</td>
<td>36.8</td>
</tr>
<tr>
<td>Lithuania</td>
<td>12 321 471</td>
<td>2.69</td>
<td>5.69</td>
</tr>
<tr>
<td>Latvia</td>
<td>7 585 496</td>
<td>1.16</td>
<td>2.62</td>
</tr>
<tr>
<td>Estonia</td>
<td>3 621 000</td>
<td>0.677</td>
<td>1.52</td>
</tr>
<tr>
<td>TOTAL</td>
<td>186 751 051</td>
<td>37.65</td>
<td>74.16</td>
</tr>
</tbody>
</table>

*Mecklenburg Western-Pommerania & Schleswig-Holstein only

Including cattle, pig and poultry manure

The project is partly financed by the European Union European Regional Development Fund

GABBS 2013, Helsinki, Finland
Manure energy potential in the BSR

<table>
<thead>
<tr>
<th>Country</th>
<th>Manure (t/a)</th>
<th>Theoretical EP</th>
<th>Techno-economical EP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min (TWh/a)</td>
<td>Max (TWh/a)</td>
<td>Min (TWh/a)</td>
</tr>
<tr>
<td>Finland</td>
<td>13 543 967</td>
<td>2.41</td>
<td>5.20</td>
</tr>
<tr>
<td>Sweden</td>
<td>21 743 000</td>
<td>3.38</td>
<td>7.04</td>
</tr>
<tr>
<td>Denmark</td>
<td>34 395 100</td>
<td>4.38</td>
<td>9.13</td>
</tr>
<tr>
<td>Germany*</td>
<td>23 765 348</td>
<td>2.95</td>
<td>6.16</td>
</tr>
<tr>
<td>Poland</td>
<td>69 775 669</td>
<td>20.0</td>
<td>36.8</td>
</tr>
<tr>
<td>Lithuania</td>
<td>12 321 471</td>
<td>2.69</td>
<td>5.69</td>
</tr>
<tr>
<td>Latvia</td>
<td>7 585 496</td>
<td>1.16</td>
<td>2.62</td>
</tr>
<tr>
<td>Estonia</td>
<td>3 621 000</td>
<td>0.677</td>
<td>1.52</td>
</tr>
<tr>
<td>TOTAL</td>
<td>186 751 051</td>
<td>37.65</td>
<td>74.16</td>
</tr>
</tbody>
</table>

*Mecklenburg Western-Pommerania & Schleswig-Holstein only

Including cattle, pig and poultry manure

Manure energy use as biogas in 2012

<table>
<thead>
<tr>
<th>Country</th>
<th>No of biogas plants</th>
<th>No of biogas plants treating manure</th>
<th>Amount of manure digested (t/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>35</td>
<td>17</td>
<td>180 000</td>
</tr>
<tr>
<td>Sweden</td>
<td>50</td>
<td>40</td>
<td>350 000</td>
</tr>
<tr>
<td>Denmark</td>
<td>150</td>
<td>80</td>
<td>2 500 000</td>
</tr>
<tr>
<td>Germany</td>
<td>7320</td>
<td>NR</td>
<td>3 500 000… 6 000 000</td>
</tr>
<tr>
<td>M-WP*</td>
<td>325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-H**</td>
<td>561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>28</td>
<td>16</td>
<td>269 000</td>
</tr>
<tr>
<td>Lithuania</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Latvia</td>
<td>30</td>
<td>30</td>
<td>725 000</td>
</tr>
<tr>
<td>Estonia</td>
<td>10</td>
<td>2</td>
<td>140 000</td>
</tr>
</tbody>
</table>

NR = not reported

* Mecklenburg-Western Pommerania; **Schleswig-Holstein

4.2 million t manure/a to biogas out of 187 million t/a available (excluding the two German states)

SIGNIFICANT POTENTIAL STILL AVAILABLE
Manure based biogas

Incentives and bottlenecks NOW
Incentives for manure biogas in the BSR

• Investment grants
 – Usually max 30% of the investment costs, but may come with prerequisites
• Feed-in tariffs / fixed prices
 – Vary significantly between BSR, detailed prerequisites
• Tax exemptions
• Other observations
 – Manure valued differently in different countries
 • EXAMPLE 1: the target in Denmark is to have 50% of manure in energy production (=biogas) by 2020 – subsidies available / planned to promote manure based biogas in particular
 • EXAMPLE 2: the feed-in tariff for biogas electricity in Finland is not available for plants with less than 100 kVA of efficiency – rules out all smaller, manure based biogas plants
Bottlenecks for manure biogas in the BSR

- Profitability
 - High investment cost, mostly rather modest subsidies
 - Manure alone not sufficient for income – need for co-substrates
- Changing political scene and legislation
 - Avoidance of risky investments due to uncertainties
- Heavy permission processes (in some countries)
- Value for nutrient recycling and avoided emissions
- Lack of knowledge
- Attitudes: NIMBY
Technological bottlenecks

• **Significant share of the energy potential in solid manure**
 – Ratio of slurry : solid manure about 50:50 in the BSR
 • Differences between countries: 80% slurry in Denmark, 10% slurry in Poland
 – Better solutions for solid manure are needed
 • Co-digestion with slurry
 • Pre-treatments to pulp into pumpable form and to increase degradability
 – Beneficial also for other ligno-cellulosic materials
 • Possibly new digester designs for high dry matter contents
 – E.g. two-stage process (separate hydrolysis and leachate digestion)

• **Challenges with plant operation**
 – Technical problems: no sufficient knowhow
 – No operation strategy
Incentives for the future

WHAT SHOULD BE DONE?
Recommendations for manure based biogas

Farmer / entrepreneur
- Plan biogas plants to answer to farm-specific requirements and ensure constant feed supply
- Take time to find all possibilities to increase profitability
- Understand manure based biogas as part of the entire manure management chain in order to take full advantage of all the benefits involved

Policy / decision maker
- Understand manure based biogas as part of the entire manure management chain in order to support the right actions
- Create well-defined and stable subsidy systems and give extra credit to solutions including manure
- Create support for not only renewable energy, but also nutrient recycling and emission mitigation
Manure based biogas offers...

- Renewable energy
- Recycling of nutrients from different organic by-products
- Enhancement of nitrogen utilisation
- Mitigation of emissions
- More efficient food production by decreasing the agricultural use of fossil fuels and mineral fertilisers

WHEN IT IS DONE IN THE RIGHT WAY!
More information:

www.balticmanure.eu
sari.luostarinen@mtt.fi