British Standards Institute publication
Trees in relation to construction – Recommendations (BS5837:2005)
and the British Standards Institute (BSI) (BS) publication

Terms used are different for the ISA and BS but essentially the planning and arboricultural processes are the same.

Arboricultural processes are divided into 9 elements

1. Perform a tree stand delineation
2. Tree survey within development area
3. Identify trees suitable for preservation
4. Access the potential impacts to trees
5. Suggest modifications to development plans
6. Identify tree work required prior to clearing and grading or predevelopment works
7. Prepare specification for tree preservation
8. Monitor trees during construction
9. Prepare a post-construction maintenance plan
Overview: Primary aim of tree preservation

Long-term survival and stability of the tree(s).

The International Society of Arboriculture (ISA) identifies three main principles:
1. Tree preservation programs must respect the pattern of tree growth and development
2. Preservation must focus on preventing injury to trees
3. Tree preservation requires space

Arboricultural processes are divided into 9 elements

1. Perform a tree stand delineation
2. Tree survey within development area
3. Identify trees suitable for preservation
4. Assess the potential impacts to trees
5. Suggest modifications to development plans
6. Identify tree work required prior to clearing and grading or predevelopment works
7. Prepare specification for tree preservation
8. Monitor trees during construction
9. Prepare a post-construction maintenance plan

Arboricultural Implications Assessment (AIA)
Syn: ISA Tree Protection Plan
Study undertaken by an arboriculturalist to:
- Identify, evaluate, and possibly mitigate the extent of direct and indirect impacts on existing trees
- Especially those impacts that may arise as a result of the implementation of any site layout proposal
ISA includes this within the written tree protection plan; typically a written report (as above)

Arboricultural Method Statement (AMS)
Syn: ISA Tree Protection Plan. Specifications
Methodology for the implementation of any aspect of development that has the potential to result in loss of or damage to a tree.
ISA, in general terms, includes this in its specifications and does not require methodology to be detailed for each tree.
It is recommended that the BS AMS be adopted for the ISA tree protection plan (written spec... or method statement in report appendix)
Typical Symptoms of Tree Stress From Construction Injury

<table>
<thead>
<tr>
<th>Foliage / Needle Colour</th>
<th>Size</th>
<th>Density</th>
<th>Seed / Cone Production Size</th>
<th>Density</th>
<th>Deadwood Size</th>
<th>Density</th>
</tr>
</thead>
</table>

- Short seasonal growth elongation
- Small leaves (often yellow)
- Thin foliage density
- Leaf scorch
- Wilting
- Early defoliation, sudden leaf loss (that occurs outside normal leaf abscission period)
- Epicormic shoots
- Heavy seed mast production
- Twig and branch dieback

- Attack by borers and other stress related pests

Bigleaf maple
- Acer macrophyllum
- Poor - Good
- Select species with good crown structure. Tolerant of root pruning. Intolerant of fill (grading).

Red alder
- Alnus rubra
- Poor - Moderate
- Retain only in groups or as individuals with strong taper and structure. Relatively short lived. Intolerant of root injury / disturbance.

Black cottonwood
- Populus trichocarpa
- Poor - Moderate Relative species tolerance

Douglas fir
- Pseudotsuga menziesii
- Poor - Good Relative species tolerance

Western red cedar
- Thuja plicata
- Poor - Moderate Relative species tolerance

Response is very site dependent and probably related to soil moisture. Tolerant of root pruning. Intolerant of fill (grading).
Assessment of relative condition of trees in individual tree survey

<table>
<thead>
<tr>
<th>Condition Rating</th>
<th>Overall Vigor</th>
<th>Canopy Density</th>
<th>Amount of Deadwood</th>
<th>History of Failure</th>
<th>Pests</th>
<th>Extent of Decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Severe Decline</td>
<td><20%</td>
<td>Large scaffold</td>
<td>More than one scaffold/primary</td>
<td>Infested</td>
<td>Major - conks and cavities</td>
<td></td>
</tr>
<tr>
<td>2 Declining</td>
<td>20-60%</td>
<td>Twig and branch dieback/tertiary and primary</td>
<td>Scallioning/primary</td>
<td>Infestation of significant pests</td>
<td>One to a few conks, small cavities</td>
<td></td>
</tr>
<tr>
<td>3 Low/Moderate</td>
<td>60-90%</td>
<td>Small secondary</td>
<td>Small branches/secondary</td>
<td>Minor</td>
<td>Present at pruning wounds</td>
<td></td>
</tr>
<tr>
<td>4 Good</td>
<td>90-100%</td>
<td>Little or none</td>
<td>None</td>
<td>Minor</td>
<td>Present at pruning wounds</td>
<td></td>
</tr>
<tr>
<td>5 Excellent</td>
<td>100%</td>
<td>None</td>
<td>None</td>
<td>None or insignificant</td>
<td>Absent</td>
<td></td>
</tr>
</tbody>
</table>

Tree Survey: Post-Planning

This is where an arboricultural assessment is not obtained until after a preliminary site layout has been prepared.

Although this is not the ideal situation, timely and appropriate expert advice can still make valuable contributions to the process of tree retention and protection.

In cases where the arborist is provided a layout, the tree survey should be conducted as detailed in the Tree Survey section.

This would then involve providing advice on tree retention, protection, remedial or mitigation works and new landscape design.

It is essential that the trees be assessed objectively and without reference to site layout proposals.

This is covered under the Arboricultural Implications Assessment (AIA) and Design Issues.

Tree Constraints Plan

The influence trees have on the site layout design is plotted on the Tree Constraints Plan (TCP).
- This illustrates both above ground owing to their size and position
- and the underground constraints due to the Root Protection Area (RPA).

The RPA is presented separately as it is a new method of determining the soil and root area to be protected.

RPA has not yet been adopted by the ISA but is in part based on their formula for calculation of a Tree Protection Zone (TPZ).
Critical Factors in Evaluating Tolerance to Construction Impact

- The likely tolerance of any form of tree to root disturbance or damage. This is based on factors such as species, age and condition and presence of other trees. (For individual open grown trees, it may acceptable to offset the distance by up to 20% in one direction)
- The morphology and disposition of the roots, when known to be influenced by past or existing site conditions e.g. the presence of roads, structures and underground services
- The soil type and structure
- Topography and drainage
- Where any significant part of the tree crown encroaches the pre-arranged position of the tree protection barriers, these parts may sustain damage during the construction period

In such cases, it may be necessary to increase the extent of tree protection barriers to contain and thereby protect the spread of the crown.

Protection may also be achieved by access facilitation pruning.

The arborist determines all this.

Arboricultural Implications Assessment (AIA) and Design Issues

The tree constraints plan, discussed previously, is utilised in the design layout. It should however be taken in context as trees are only one factor requiring consideration in this regard.

Important and sensitive trees may prevent development or dramatically alter its design.

Retention of unsuitable trees, or too many, should be removed from consideration so as to avoid excessive pressure on trees during development and subsequent demands for their removal.

NOTE: Trees are material considerations in the formal planning system, whether or not they are statutorily/legally protected.

Clearing and grading works
Clearing and grading works

<table>
<thead>
<tr>
<th>Activity</th>
<th>Impact</th>
<th>Methods/treatments to minimise damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stripping site of organic surface soil before grading, clearing unwanted vegetation; demolishing existing structures</td>
<td>Root loss</td>
<td>- Restrict stripping of topsoil around trees - Arborist may be needed for adjacent tree removal if crowns are intertwined</td>
</tr>
</tbody>
</table>

| Lowering of grade, scarifying, preparing sub-grade for fill and structures | Root loss | - Before grading, root prune tree at edge of excavation to a depth required - Spoil beyond cut face can be removed by equipment sitting outside the drip line of the tree - Use retaining walls with discontinuous footings to increase the distance that natural grade is maintained from trunk |

Clearing and grading works

Dr. Olaf K. Ribeiro, Ribeiro Tree Evaluations, Inc.

Activity Impact Methods/treatments to minimize damage

Trenching for utilities, stormwater system, drains Root loss
- Avoid open trenching in rooting area
- Tunnel under roots, if possible. If not, within root area, dig trench by hand, bridging roots greater than 1 inch / 254 mm
- Consolidate utilities into one trench

Compacted surface soils Unfavorable conditions for root growth: chronic stress from restricted root systems
- Fence trees to keep traffic and storage out of root area
- Provide a storage area and traffic control area for construction activity away from trees
- Where traffic cannot be diverted, protect soil surface
Clearing and grading works

<table>
<thead>
<tr>
<th>Tree diameter</th>
<th>Auger / Trenchless distance from tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-9 inches</td>
<td>5 feet</td>
</tr>
<tr>
<td>10-14 inches</td>
<td>10 feet</td>
</tr>
<tr>
<td>15-19 inches</td>
<td>12 feet</td>
</tr>
<tr>
<td>over 19 inches</td>
<td>15 feet</td>
</tr>
</tbody>
</table>

Tree Protection Zone (TPZ)
Area - radial distance - based on the radial distance m/ft identified by an arboriculturalist

• To be protected during development,
• Including demolition and construction work,
• Involving the use of barriers and/or ground protection fit for the purpose to ensure the successful long-term retention of a tree.
Species Tolerance Tree Age Distance from trunk feet per inch trunk diameter

Good
- Young (<20% life expectancy)
- Mature (20-80% life expectancy)
- Overmature (>80% life expectancy)
 - 0.5 feet
 - 0.75 feet
 - 1 foot

Moderate
- Young
- Mature
- Overmature
 - 0.75 feet
 - 1 foot
 - 1.25 feet

Poor
- Young
- Mature
- Overmature
 - 1 foot
 - 1.25 feet
 - 1.5 feet

ISA - Tree Protection Zone / Root Protection Area

Arboricultural Method Statements (AMS) and the Tree Protection Plan (TPP)

Once the layout design has been finalised, a Tree Protection Plan should be prepared containing the following information:

1. Trees selected for retention, clearly identified (e.g. by number) and marked on a plan with a continuous outline;
2. Trees to be removed, also clearly identified (e.g. by number) and marked on a plan with a dashed outline or as determined by the planning authority the precise location for erection of protective barriers and any other relevant physical protection measures including ground protection to protect the TPZ and marked as a construction exclusion zone on the plan;

NOTE: While the tree protection zone may be plotted as a circle on the constraints plan, the position of the barrier and any ground protection should be shown on subsequent plans as a polygon representing the actual position of the protection. It is helpful during setting out, and for the purposes of enforcement if the plan is annotated the dimensions of the exclusion zones.
ISA - Tree Protection Zone

Tree Protection Barriers

- must establish a protection zone that covers the trees optimum rooting zone
- should be of substantial construction i.e. plywood, chain-link or sheet metal fence
- fines and penalties for violating the area demarcated by the barrier

This can either be included in the contract or specifications

- location of the barrier is determined by the certified arborist based on species tolerance, condition, and age
- the barrier placement should also account for working space

Examples of Tree Protection Zone (Additional)

Examples of Tree Protection Zone in a streetscape (left) and open sight (right). Note fixed chain-link fence.

Tree protection signage; with details of fines and arborist contact details.

Examples of tree protection in a streetscape (right) and open sight (right). Note fixed chain-link fence.

Examples of Tree Protection Zone (Additional)
Mulch Usage for Mitigation and Treatments

- Moderates soil temperature
- Conserves soil moisture
- Provides organic matter and improves root density
- Reduces compaction and improves soil structure
- Eliminates turf grass competition
Construction Damage

Evaluation of Construction Impacts
Must include an assessment on the health and structure of the tree(s); Risk Assessment
In addition the following should also be addressed:
- destruction of the general root system, particularly loss of rooting area;
- damage to the root collar and structural roots;
- mechanical injury and damage to the stem;
- changes in soil structure such as compaction, fill(s), erosion, and loss of organic matter;
- changes in wind loading in the crown, which is particularly related to potential for failure;
- damage to branches;
- decline in overall health;
- obstructions.

Other Post-Construction Requirements

Irrigation
- The amount of water applied must be appropriate to the species requirement
- Light, frequent irrigations should be avoided. Irrigation should wet the entire root zone and be allowed to dry before another application
- Excess irrigation from new landscapes should be avoided. Runoff from plantings should be minimized and or directed away from trees
- Watering the trunk should be avoided

Pruning
- Annual inspection of retained trees is required. Prescribed treatments are typically based on the results of inspection
- Pruning to mitigate risk is the priority following construction impacts

Mulching
- See section on mulching previously
- Application of 100 – 150 mm / 4 - 6 inches of mulch is recommended to the edge of the drip line or Tree Protection Zone, which ever is greater
- Mulch should be kept away from the trunk base

Fertilization
- An assessment of the soil nutrient content is preferred prior to any application so that specific nutrient deficiencies can be targeted
- Application of a balanced slow-release fertilizer is recommended
Direct Damage to Roots

This may only be determined from identifying the position of service trenches and the limits of other excavations.

Where roots have been severed the anchorage of the tree may have been seriously reduced.

Root Growth Requirement: sustaining the root system

- High density soils will reduce root growth
- Limiting root growth will limit tree potential
The entire root system is typically concentrated within the uppermost 910 mm / 36 inches of the soil:
- although it may be deeper within the dense mass of roots and soil close to the truck and in older roots
- within a short distance the root system branches, forming a network of small diameter woody roots, that typically extend radially for a distance much further than the height of the tree
- this is especially impaired by unfavorable conditions
All parts of this system bear a mass of fine absorbing roots (non-woody / soft tissue).
Absorbing root system within the top 450 mm / 18 inches

Any excavations that encounter roots over 25 mm / 1 inch diameter require particular care to avoid damage; hand excavation is usually prescribed, avoiding damage to the bark.
Other methods of excavation are now available i.e. hydro or pneumatic excavation.
Roots exposed should be surrounded by sharp (washed) sand before replacing soil or other material in the excavation area.

Indirect and Direct Damage to Roots
Tree roots develop in the soil at a level where oxygen and moisture are available in the appropriate concentrations.
Sudden alteration of the depth of soil over roots as a result of lowering (Direct) or raising the soil level within the branch spread or area designated as critical to the survival of the tree can kill the roots and as a result the tree may die.
Root Invigoration
As per previous illustration:
- No treatment within X3 DBH [-]
- Treatment area to include 50% of area [B] within Tree Protection Zone (TPZ)
- Treatment of soil to 15 cm / 6 inches depth
- Incorporation of organic matter and slow-release fertiliser
- Mulch treatment within TPZ.
Soil compaction

A: Preference is to keep all cuts outside the Tree Protection Zone or dripline.

B: Optimum minimum distance for root cutting; DBH X 5

C: Absolute minimum distance for root cutting; DBH X 3

C is the closest root cutting distance. Cutting closer creates a high risk of failure. Increase distances if tree(s) are large, leaning, root decay is present and so on.

*Trunk diameter at 1.3m (4.5 feet) height
Risk Rating for Root Loss and Root Decay

Critical Risk: >50% of roots with significant decay / loss, or if affected roots is uphill or opposite lean
High Risk: >33% of roots with significant decay / loss, or if affected roots is uphill or opposite lean
Moderate Risk: >25% of roots with some decay or cut
Low Risk: no decay or cut roots, not in low or wet site and so on