BIOLOGIC DRUGS IN THE TREATMENT OF MYOSITIS

Professor David Isenberg

University College London, UK

KEY FACTS – 1 -

- Incidence of PM/DM/IBM 1.9-7.7 million
- **Prevalence in the UK = 8/100,000**
- Affects all ages but 2 peaks of onset; childhood onset 5-15 and adult onset 40-60. IBM peaks after 50 years.
- DM/PM overall F:M ratio = 2-3:1

KEY FACTS – 2 – CLINICAL CLASSIFICATION

- Adult onset idiopathic polymyositis
- Adult onset idiopathic dermatomyositis
- Childhood onset myositis (invariably dermatomyositis)
- Myositis associated with other autoimmune rheumatic disease
- Inclusion body myositis
- Rare forms: focal, ocular, eosinophilic, granulomatous myositis
- Cancer associated myositis

KEY FACTS – 3 – A MULTISYSTEM DISEASE

- Constitutional fever, wt loss, nodes, fatigue
- Joints arthralgia, arthritis
- Gastrointestinal dysphagia, abdo pain
- Cardiovascular palpitations, chest pain

SKIN – RASHES, ERYTHEMA, ULCERATION AND ERYTHRODERMA

MUSCLE – MYALGIA, WEAKNESS

Polymyositis: histopathological features

Dermatomyositis: histopathological features

Respiratory – dysphonia, dyspnoea

TRADITIONAL METHODS OF ASSESSING MYOSITIS

CURRENT ASSESSMENT OF MYOSITIS – 1 -

	Activity	Damage
Clinical	rash, arthritis, fever, MMT, myalgia	Atrophy, contractures
Laboratory	↑ Muscle enzymes (CK, LDH, AST, ALT)	↓ Creatinine, normal enzymes
Systemic	RFTs, HRCT, barium swallow	RFTs, HRCT, barium swallow
EMG	↑ fibrillations	normal
Biopsy	Inflammatory cells, necrosis, MHC staining	Little cells, atrophy, fibrotic tissue
MRI	↑ signal suggesting inflammation	Fat replacement, atrophy

THE UCL EXPERIENCE – 1 -

- Retrospective study (1976 \rightarrow 2013)

97 patients followed up during this period (72F, 25M)

n = 35

THE UCL EXPERIENCE – 2 -

	All Patients	Those Who Died
	n = 97	n = 24
	%	%
ADM	38	37
ΑΡΜ	36	33
OS	26	29
Female	74	58
Male	26	42
Caucasian	64	67
Afro-Caribbean	21	21
South Asian	10	8

THE UCL EXPERIENCE – 3-

	All Patients	Those Who Died
	n = 97	n = 24
Age at Diagnosis	41 years	42 years
Median Duration of Symptoms (IQR)	6 (9)	6 (5.5)
Highest CK		
< 2 X ULN	3%	0%
> 10 x ULN	63%	67%
ANA +ve	49%	58%

THE UCL EXPERIENCE – 4-

	All Patients	Those Who Died
	n = 97	n = 24
	%	%
Cardiac involvement	25	50
Lung involvement	32	46
Malignancy	12	25
Infection	33	58

THE UCL EXPERIENCE – 5 -

	All Patients	Those Who Died
	n = 97	n = 24
Treatment	%	%
Steroids	7	12
Steroids + 1 IS	27	16
Steroids + 2 IS	26	33
Steroids + 3 IS	11	16
Steroids + 4 or more IS	29	21
Disease Course		
Monophasic	36	25
Relapsing/remitting	34	33
Chronic Persistent	30	42

THE UCL EXPERIENCE – 6 -

Statistically significant factors associated with *survival*

<u>Univariate</u> <u>Analysis</u>	<u>Hazards Ratio</u>	<u>Confidence</u> Interval	<u>p =</u>
Lung Involvement	1.78; 95%	1.13 – 2.82	0.013
Infection	4.18; 95%	1.61 – 10.91	0.003
Upper and Lower Limb Involvement	0.13; 95%	0.03 – 0.62	0.010
<u>Multivariate</u> <u>Analysis</u>			
Infection	3.68; 95%	1.38 – 9.82	0.009
Upper and Lower Limb Involvement	0.16; 95%	0.03 – 0.81	0.027

THE UCL EXPERIENCE – 7 -

<u>Causes Of Deaths</u>	n =
Lung	2
Cardiac	4
Malignancy	6
Infection	7
<u>Other:-</u>	
Trauma	1
GI bleeding	1
Uncertain	3

OUTCOME UCL MYOSITIS COHORT (1979 – 2015) n = 97

CELL DEATH

APOPTOSIS - HISTORY

- First observed histochemically by Kerr (Australia) in 1965
- Was referred to as 'shrinking necrosis' in 1971
- 'Apoptosis' first used in 1972
- Now thought to be the major mechanism of normal cell death in complex organs
- Characterised by an orderly sequence of well-defined biochemical events

MORPHOLOGY OF APOPTOSIS

Viable cell

Apoptosis

CELL DEATH

CELL DEATH

CORTICOSTEROIDS AND MYOSITIS

- Have never been tested adequately in randomised, placebo-controlled trials
- Carpenter (1977) compared 20 mg + prednisolone vs
 < 10 mg /day over an 8 week period
- Most authors have suggested a starting dose of 1-2 mg/kg prednisolone but this has never been validated
- Efforts have been made to show that lower doses (0.5 mg/kg)mg may be sufficient e.g. *Nzeusseu et al. Clin Exp Rheum 1999; 17,441-6.*

IMMUNOSUPPRESSIVES (AZATHIOPRINE) AND STEROIDS (DOUBLE-BLIND PROSPECTIVE TRIAL)

2 mg/kg azathioprine

IMMUNOSUPPRESSIVES (AZATHIOPRINE) AND STEROIDS (DOUBLE-BLIND PROSPECTIVE TRIAL)

60 mg prednisolone

2 mg/kg azathioprine

3 months

В

16 patients

No significant difference between regimes

60mg prednisolone

placebo

Bunch et al Ann. Int Med 1980; 92:305

IMMUNOSUPPRESSIVES (AZATHIOPRINE) AND STEROIDS (DOUBLE-BLIND PROSPECTIVE TRIAL)

Followed by an open 3 year study

CONCLUSIONS

'the distinct impression one perceived at the end of the 3 years was that the group on azathioprine was stronger and required less prednisolone than the group on prednisolone alone'

Bunch. A & R; 1981: 24-45

IMMUNOSUPPRESSIVES (AZATHIOPRINE) AND STEROIDS

- Of 25 patients with steroid resistant myositis given oral methotrexate 88% had significant disease improvements and 43% reduced their steroids.
 - Bohan et al. Medicine 1977; 56:25
- A randomised control trial in 36 patients of methotrexate and cyclosporin A showed equivalent clinical improvement and decreased CK.
 Venkovsky et al. Scand J Rheum 2000; 29:95

In a randomised trial of 30 patients with treatment resistant myositis an intention to treat analysis showed a trend to improvement (p=0.025) for those given oral azathioprine and methotrexate compared to IV methotrexate.

Villaba et al. A & R 1998; 41: 392

IVIG AND MYOSITIS

- Several cases reports suggesting benefit
- In a double blind placebo-controlled trial of 15 patients, 8 given IVIg (and continuing oral prednisolone) showed significant improvement in muscle strength (p< 0.018) and symptoms
- (p < 0.035) whereas the 7 given the placebo showed no benefit.
 - Dalakas et al. N Engl J Med 1993; 32

OTHER THERAPIES

 In spite of some optimistic case reports a controlled trial involving 39 patients of leukaphoresis and plasma exchange was no more effective than sham apheresis

Miller et al. N Eng J Med 1992; 326:1380

 Whole body irradiation, total lymphoid irradiation, thymectomy, extracorporeal photochemotherapy have never been subjected to adequate control trials.

WHAT TREATMENT FOR MYOSITIS HAS FAILED TO ACHIEVE!

ADDITIONAL CONSIDERATIONS – 1 -

– Use sunscreens

CUTANEOUS

- Consider topical steroids
- Hydroxychloroquine can improve the rash and lower steroid requirement

- Woo et al. J Am Acad Derm 1984; 10: 582

BUT no method of treating subcutaneous calcification is of proven benefit

ELBOW CALCINSOSIS

ADDITIONAL CONSIDERATIONS – 2 -

ARTICULAR

Co-existent polyarthralgia quite common

Usually steroid responsive PULMONARY

Interstitial lung disease common

Response to immunosuppression variable

CARDIAC

Up to 70% of patients involved

Mostly asymptomatic

GASTRO-INTESTINAL

Dysphagia is up to 30%

Cricopharyngeal myotomy occasionally needed (Kagen et al. 1985)

Active exercise is discouraged during acute inflammation

Start passive range of motion exercises early to avoid joint contractures

Active exercise can be introduced when inflammation subsides (Hicks 1988),start with isometric exercises

Active resistive exercises can be considered in stable patients even if some disease activity persists (Escalante et al 1993).

A FEW NOTES ON TREATMENT BEFORE 2006 – 1 -

 Before corticosteroids and immunosuppressives the mortality rate was 50-70%

eg Medsger et al 1971

- Even after their introduction the outlook was far from 'stellar' eg.

5yr survival – 52% Benbassset et al 1985

8yr survival – 73% Hochberg et al 1986

A FEW NOTES ON TREATMENT BEFORE 2006 – 2 -

The common causes of death in 'most' series:-

- Infection
- Lung disease
- Cardiac disease
- Malignancy

B-CELL TARGETED THERAPIES: DERMATOMYOSITIS

- All 6 achieved CD20⁺ B-cell depletion
- Drug well tolerated
- Improvement noted in CK (baseline range 128–5600 U/L to 57–1168 U/L); FVC (maximum improvement range 33%–44%) and muscle strength

B-CELL TARGETED THERAPIES: DERMATOMYOSITIS

Time to Max Improvement (weeks)

Patient:	4	3	2	1	6	5
	-	•		-	•	-

Levine TD. Arthritis Rheum. 2005;52:601-607.

BUT...

- The RIM (Rituximab in Myositis) trial involving >200 patients failed to show any benefit for Rituximab + SOC versus SOC + placebo.
- However the concomitant steroids and immunosuppressives were probably too high to make it likely that Rituximab could show benefit.

PRIMARY ENDPOINT IN RIM TRIAL: NO DIFFERENCE IN TIME TO RESPONSE [DOI]

Time (weeks) From Randomization

In response criteria project, examined MD assessment of improvement at week 24 Oddis CV et al., Arthritis Rheum 2013;65(2):314-24.

THE USE OF RITUXIMAB IN THE TREATMENT OF IDIOPATHIC INFLAMMATORY MYOPATHY [IIM] -1-

Methods:

 Bibliographic search of the PubMed database using the keywords

Inflammatory myopathies	OR
Anti-synthetase syndrome	OR
Polymyositis	OR
Dermatomyositis	OR

RITUXIMAB

AND

(published up to July 2015)

Fasano, Hajji, Loyo, Gordon, Isenberg. Submitted.

THE USE OF RITUXIMAB IN THE TREATMENT OF IDIOPATHIC INFLAMMATORY MYOPATHY [IIM] -2-

Methods:

We considered case reports and open label studies and clinical trials – 2 main regimes used 1g x 2 2/52 apart or $375/m^2$ weekly x 4

A CAUTIOUS OVERVIEW OF THE RESULTS!

447 patients treated [including 151 with DM; 142 with PM; 71 with JDM]

 muscle weakness
 - 410
 (91.7%)

 alveolitis
 - 70
 (15.6%)

 arthritis
 - 14
 (3.1%)

- Overall 347 (77.6%) were reported to show some form of improvement.

OTHER BIOLOGIC DRUGS THAT HAVE BEEN USED TO TREAT MYOSITIS

Abatacept

Infliximab

Tocilizumab

Anakinra

Adalimumab

Silfalimumab

Etanercept

(Fasano, Alves, Isenberg submitted)

ABATACEPT – BLOCKS APC/T-CELL

- 3 case reports [refractory PM; JDM; myositis overlap]
- each described some clinical benefit and

 ↓ enzyme level in 'hard-to-treat' cases
- ARTEMIS Trial (ongoing phase III)

TNF α BLOCKADE

<u>INFLIXIMAB</u>	<u>ADALIMUMAB</u>	<u>ETANERCEPT</u>
Some encouraging early reports	1 case report of a hard-to-treat patient	Some encouraging early reports
2 small studies with n = 13 + n = 6 showed no benefit	↑ muscle strength ↓ CK	52 week pilot trial of 16 treatment naïve patients showed no benefits [apart from steroid sparing]
NOT recommended		(Ann Neurol 2011; 70; 427)

TOCILIZUMAB [IL-6R BLOCKER]

• 3 case reports [2PM, 1 overlap syndrome]

 In each of these hard-to-treat patients some clinical benefit and improved enzyme levels A 12 month open-label trial reported an improvement in 7/15 patients with refractory MyOSitiS (Zong et al. Ann Rheum 2014; 75; 913)

 nb the inflammatory infiltrates were still present in repeat biopsies and the IL-1 expression was not correlated to clinical responses Phase 1b trial – a moderate suppression of genes induced by type 1 IFN (which is highly overexpressed in myositis patients compared to controls)

 Some improvement in muscle strength (correlated with gene neutralization) was noted (Higgs et al. Ann Rheum Dis 2014; 73; 256)

INVESTIGATOR LED STUDY

PROS AND CONS

At Diagnosis

Post-Conventional Therapy

Pros Original

Pros Easier to recruit

Not confounded by previous/current immunosuppression

Cons Harder to recruit

Harder to fund

(Probably) easier to fund

Cons Not original

Greater patient diversity [duration/damage/ prior variable activity/ therapy]

AT DIAGNOSIS – TRIAL - THOUGHTS

- Could be:-

- In newly diagnosed, biopsy-confirmed, patients with IIM

Rituximab at time 0 and 6mnsSteroids andfollowed by Azathioprine, MTXvsAzathioprine,or MMFMTX or MMF

Primary endpoint at one year.

POST-CONVENTIONAL THERAPY

- Could be:-

S.O.C.

 In patients with established disease who have failed/done inadequately with steroids and 2 immunosuppressives eg MTX/Azathioprine

VS.

Rituximab + S.O.C. [viz Prednisolone (max 20mgm/dy) + MMF] 2 + 3g/dy

END POINTS – 1 YEAR END POINT

Possibilities

• Use the agreed IMACS/PRINTO myositis response criteria [quite demanding].

OR

 Agree on minimal data set viz muscle strength/CPK/patient and physician VAS.

OR

• Use the loss of MITAX As and Bs (complete or partial) as the end point.

QUESTIONS FOR DISCUSSION

• IMACS/PRINTO end points [quite demanding]

OR

- Agree on minimal data
 - muscle strength
 - CPK
 - patient and physician VAS
 - some centres using the full MITAX end points

 Enrolment at diagnosis OR refractory disease?

Final consensus definition of improvement (Reserve Slide)

- Uses absolute % change in core set measures (CSMs)
- Conjoint analysis (1000minds) provides different weights to the various CSMs
 - MMT/CMAS > MD Global Activity > Extramuscular Global/DAS > Patient VAS > HAQ/CHAQ > Muscle enzymes/CHQ-PhS
- Uses same definition for adult DM/PM and juvenile DM
 - Different optimal cut points for each
- Defines criteria for minimal, moderate and major improvement
 - Major improvement is provisional for adult DM/PM
- Total improvement score is associated with magnitude of improvement
- Selected as a primary endpoint for future clinical trials
 - Pending approval from ACR/EULAR as final response criteria

Devere & Bradley - Polymyositis: its presentation and mortality *Brain 1975; 98: 637-66*

- 118 patients studied
- proximal lower limb weakness = 92%
- proximal upper limb weakness = 86%
- EMG studies performed in 98 normal in 11
- open muscle biopsies in 103 normal in 11

MANUAL MYOMETER DEMONSTRATED

FACTORS AFFECTING CREATININE KINASE LEVELS – OTHER CAUSES OF ELEVATED LEVELS – 1 -

- ethnicity
- recurrent strenuous exercise
- drugs
- endocrine/metabolic disorders
- other conditions
- other muscle diseases
- dystrophy
- rhabdomyolysis
- myocardial infarction
- metabolic

FACTORS AFFECTING CREATINE KINASE LEVELS – CAUSES OF LOW CK LEVELS IN ACTIVE MYOSITIS – 2 -

- Circulating inhibitor
- Steroid treatment without disease suppression
- Advanced disease with atrophy i.e. damage not activity
- ?? concurrent autoimmune rheumatic disease
- unexplained!

	Lupus + Myositis n = 11	Primary Myositis n = 19
F:M	10:1	12:7
PM:DM	7:4	12:7
Age at onset	33 yrs (21-47)	36 (29-66)
Initial CK	11.2* (1.3-50)	10.7* (0.8-28)
Initial quads strength	49% of normal	52% of normal

*expressed as a multiple of the upper limit of normal.

Garton & Isenberg. BJR 1997; 36: 1067

MUSCLE BIOPSY - PROBLEMS

- Open vs needle vs conchotome
- Focal nature of the lesion in some cases
- Must look out for:

- fibre hypertrophy =	= dystrophy			
- Inclusion bodies	= IBM			
 widespread necrosis with = 	rhabdomyolysis			
profuse regeneration				
(+ myoglobinuria)				

DUCHENNE'S MUSCLE BIOPSY NEEDLE

MODERN MUSCLE BIOPSY NEEDLE

INCLUSION BODY MYOSITIS

CT SCAN QUADRICEPS – 3-YEAR FOLLOW-UP

MRI SCAN - SOLEUS

