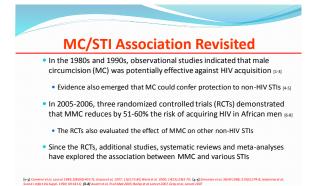

MALE CIRCUMCISION FOR STI PREVENTION: HOW WELL DOES IT WORK AND HOW IS IT DONE?

Kawango Ago	t I								
Impact Resea	rch & Di	evelop	ment	Orga	niza	tio	n		

World STI & HIV Congress 2015 September 13-16, 2015. Brisbane Convention and Exhibition Centre Brisbane, Australia.

	Presentation Outline	
PART 1:		
 Introduction 		
 Association of male circur 	mcision with:	
 Human papillomavirus 		
Genital Ulcer Disease		
 Herpes Simplex Virus T 	ype 2	
Syphilis		
 Gonorrhoea, Chlamydi 	a and Trichomoniasis	
Conclusions		
• <u>PART 2</u> :		
Current status of male cire	cumcision devices for adolescents and adults	
 PrePex™ 		
 Shang Ring[™] 		



INTRODUCTION TO PART 1 1855: Review of venereal disease patients

	Jews (n=58)	Non-Jews (n=272)
Syphilis	11 (19%)	165 (61%)
Gonorrhoea	47 (81%)	107 (39%)

Author's interpretation: "The circumcised Jew is, then, very much less likely to contract syphilis than an uncircumcised person"

Hutchinson, J. BMJ & Medical Times and Gazette, Vol. II Dec 1855, pp. 542-3 (Slide courtesy of Helen Weiss, LSHTM)

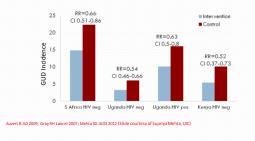
Human Papillomavirus

Study Title	Author	Population	Effect size (95% CI)	Other Info
MC and STI Acquisition	Homfray et al, PLoS One, 2015	Men age 16-44yrs in Britain (n=1859)	AOR 0.26 (0.13-0.50)	Any HPV type
			AOR 0.14 (0.05-0.40)	High risk
Prevalence, incidence, and risk factors for HPV 16 seropositivity in Australian homosexual men	Poynten et al, Sex Transm Dis 2012	Insertive MSM in Australia n=1,772	HR 0.43 (0.21-0.88)*	HPV-16
MC and the incidence and	Albero et al,	Healthy Men in USA	aHR 1.08 (0.91-1.27)	HPV incidence
clearance of genital HPV infection in men	BMC Infect. Dis., 2014	(n= 4033)	aHR 0.95 (0.88-1.02)	Clearance for any HPV
MC and prevalence of genital	Albero et al,	Meta-analysis of 21	OR 0.57 (0.42-0.77)	HPV prevalence
HPV: A systematic review and meta-analysis	Sex Transm Dis 2012	studies 1971-2010 (n=14,382)	RR 1.01 (0.66 -1.53)	HPV incidence
			HR 1.57 (0.51-4.89)	HPV clearance
MC and HPV infection in men:	Larke et al, J	Systematic review	OR 0.57 (0.45-0.71)	Overall prevalent HPV
A systematic review and meta- analysis	Infect Dis 2011	of 23 papers	RR 0.75 (0.57-0.99)	Overall incident HPV
* Association may be spurious	riven relationship b	otwoon MMC and HIV i	OR-0.47 (0.37-0.60)	Samples from
Association may be spundus	siven relationship t	etween wivic and the	OR 0.35 (0.12-1.05)	glans/corona
			UN 0.55 (0.12-1.05)	Samples from Urethra

Association between MC and HPV: S. Africa & Kenya RCTs

Study Title	Author	Population	Effect size (95% CI)	Other Info
Effect of MC on the prevalence of high-risk HPV in young men: results of a RCT in Orange Farm, South Africa	Auvert et al J Infect Dis 2009	South Africa: Young men (n=3274)	PRR 0.66 (0.51-0.86)	Incidence in high risk HPV
Association of Low-Risk HPV Infection with MC in Young Men: Results from a Longitudinal Study Conducted in Orange Farm, South Africa	Tarnaud et al Infect Dis Obstet Gynecol 2011	South Africa: Young men (n=1,264)	aPRR 0.53 (0.40-0.70)	Incidence in low risk HPV
Acquisition and persistence of HPV-16 and HPV-18 among men with high-HPV viral load infections in a circumcision trial in Kisumu, Kenya	Senkomago et al, J Infect Dis 2015; Backers et al, Int J Cancer, 2012	<u>Kenya</u> : Young men (n=2,290)	HR 0.32 (0.20-0.49) HR 0.34 (0.21-0.54) RR 0.36 (0.18-0.72) RR 0.34 (0.13-0.86)	Incidence of HPV 16 Incidence of HPV 18 Persistence of HPV 16 Persistence of HPV 18

Association between MC and HPV: Uganda RCT


Article	Author	Population	Effect Size (95% CI)	Other Info
MC decreases acquisition and increases clearance of high-risk HPV in HIV- negative men	Gray et al, J Infect Dis 2010	Uncircumcised <u>HIV-</u> negative men 15-49yrs (n=840)	RR 0.45 (0.28-0.73) RR 1.39 (1.17-1.64)	Incidence of multiple high risk HPV Clearance of pre-existing HPV increased with MC
MC of HIV-infected men: Effects on High Risk HPV Infections	Serwadda et al, J Infect Dis 2010	Uncircumcised <u>HIV-</u> positive men 15-49yrs (n=210)	RR, 0.53 (0.33-0.83) RR, 1.09 (0.94-1.27)	Incidence of multiple high- risk HPV Clearance of new HPV
HPV incidence and clearance among HIV+ and HIV-men	Tobian et al; <i>AID</i> S 2012	<u>HIV-neg. & HIV-pos.</u> <u>men.</u> 15-49yrs (n=999)	aIRR=0.70 (0.55-0.89) aRR 1.48 (1.26-1.74)	HPV incidence HR- HPV clearance increased with MC
Effect of MC of HIV-neg. men on transmission of HPV to HIV-neg women	Wawer et al, Lancet 2011	Concordant HIV- negative couples (n=1245) (women)	RR 0.77 (0.63-0.93)	Incidence of high-risk HPV in women

Genital Ulcer Disease

Circumcision Reduces GUD: Results from the 3 RTCs

Herpes Simplex Virus Type 2

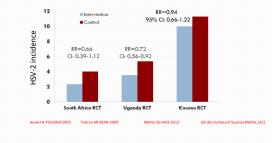
Orange Farm Trial

 Circumcision had borderline impact on incident HSV-2 in intention to treat analysis (IRR 0.66; Cl 0.39-1.12) but was significantly protective in as treated analysis (IRR 0.55; Cl 0.32-0.94) [1]

• Rakai Trial

- At 24 months follow up, incident HSV-2 was lower in circumcision group (aHR 0.72; CI 0.56-0.92) [2]
- Contrary to findings in men, circumcision of partner did not affect HSV-2 acquisition among females with HSV 2-positive partners (RR 0.85; Cl 0.44-1.67)[3]

[1] Sobngwi-Tambekou et al., JID 2009; 199.958-64; [2] Tabian at al NEJM 2009; 360(13):1298-309; [3] Tabian et al., J Infect Dis 2012; 205(3):486-


Evidence from the 3 RCTs: The Kenya Trial

• Kisumu Trial:

- Overall, the incidence of HSV-2 did not differ by MC status (RR 0.94; Cl 0.7-1.25) [1]
 Blood samples from HIV seronegative men were tested for HSV-2 using Herpesleet HSV-2 ELISA (n=120), Kalon HSV-2 ELISA (n=120), U of Washington
- Western blot (n=101) and a recombinant inhibition test (n=90) [2]
- Compared to Western blot: HerpeSelect had 100% specificity but only 40% sensitivity; while Kalon had 92% sensitivity and 79% specificity
- Relative to recombinant inhibition test, Kalon test had 80% sensitivity and 82% specificity
- Using the recombinant inhibition test, sensitivity of Western blot was low, at 49%
- Overall, the Kalon HSV-2 ELISA performed better than HerpeSelect

[1] Mehta et al, AIDS 2012; 26(9):1141-9; [2] Smith et al., Sex Transm Infect; 85(2):92-6

Mixed results on association between MC and HSV-2

Evidence from a Systematic Review/Meta-analysis and RCTs

 In 2006, a systematic review and meta-analysis of 26 published articles indicated significant reduction in syphilis in circumcised men (RR 0.67; Cl 0.54-0.83) [I]

• Kisumu Trial:

Incident syphilis did not differ by MC status (RR 1.23; CI 0.41-3.65) [2]

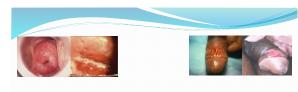
• Rakai Trial:

Act. 2006 (82/2):101-9: [2] M

• Incident syphilis did not differ by MC status (aHR 1.10; CI 0.75-1.65) [3]

3

Association between Male Circumcision and the Incidence of Syphilis among Men and Women: A Prospective Study in HIV-1 Serodiscordant Heterosexual African Couples


Pintye J. Baeten J. Manhart L. et al., Lancet Glob Health 2014; 2(11):e664-71

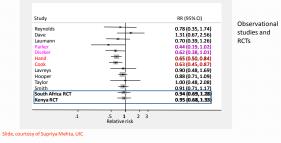
Rationale, Objectives and Methods

- Objectives: Assess the association between MC and incident syphilis among HIVinfected and -uninfected men and women enrolled in the Partners PrEP Study
- Population: Participants in Kenya and Uganda HIV-1 serodiscordant heterosexual couples in the Partners PrEP Study
- Methods: Analysis of prospective data covering 2.75 years of follow-up

Results

- Data obtained from 4,716 HIV-1 heterosexual serodiscordant couples
- 221 incident syphilis infections were identified (122 men and 99 women)
- Circumcised men had a 42% overall reduction in risk of acquiring syphilis overall (aHR 0.58; Cl 0.37-0.91), and:
 - A 62% significant reduction among HIV-infected men (aHR 0.38; CI 0.18-0.81)
 - A 36% non-significant reduction among HIV-uninfected men (aHR 0.64; CI 0.36-1.11)
- Partners of circumcised men had a 59% reduction in risk of acquiring syphilis overall (aHR 0.41; Cl 0.25-0.69), and:
 - A 48% reduction among HIV-infected women (aHR 0.52; CI 0.27-0.97)
 - A 75% reduction among HIV-uninfected women (aHR 0.25; CI 0.08-0.76)

Neisseria Gonorrhoeae, Chlamydia Trachomatis and Trichomonas Vaginalis



Does MC protect against Ng, Ct and Tv?

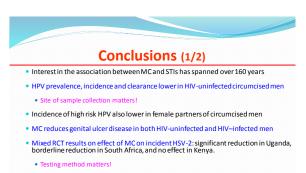
Kenya Trial:

- The incidence of N. gonorrhoeae, C. trachomatis and T. vaginalis, combined or individually, did not differ by circumcision status $\ensuremath{n_1}$
- Uganda Trial:
 - MC did not protect against genital discharge (PRR 0.84; Cl 0.63-1.11) or Dysuria (PRR 0.97; Cl 0.77-1.21) [2]
- Among female partners circumcision reduced symptoms of Tv (aPRR 0.52; Cl 0.05-0.98), any Bv (aPRR 0.60; Cl 0.38-0.94) and severe Bv (aPRR 0.39; Cl 0.24-0.64) $_{\rm [3]}$
- South Africa Trial:
 - The prevalence of Ng, Ct and Tv did not vary by MC status in intention-to-treat analysis (Ng= OR 0.97; p = 0.84; Ct= OR 0.58; p = 0.065; Tv= OR 0.54; p = 0.06); however, in the as-treated analysis, circumcision protected men against Tv (AOR 0.41, p = 0.03) [4]
- (a) Minitas et al., J Infect Dis 2009, 2003):270-8; (a) Gray et al., Lancet 2007; 369:557-66; (j) Gray et al, Am J Obstet Gynecol 2009; 2002]:42.42.7; (4) Sobingeri Tambekouet al., Sex Trans. Infect 2009; (5):(2):116-20

Circumcision does not protect against Gonorrhea

Summary Of I	VIC and non-	HIV STIs in t	he RC	Ts: Men
Infection	Outcome	Trial	RR	95%CI
		S Africa	0.66	0.51-0.86
Penile HPV	Incidence	Uganda	0.67	0.50-0.91
		Kenya	0.40	0.30-0.50
		S Africa	0.68	0.38-1.22
HSV2	Incidence	Uganda	0.72	0.56-0.92
		Kenya	0.94	0.7-1.25
N. Gonorrhoea	Prevalence	S Africa	0.94	0.69-1.29
N. Gonorrhoea	Incidence	Kenya	0.95	0.68-1.34
et 1	Prevalence	S Africa	0.56	0.32-1.00
Chlamydia trachomatis	Incidence	Kenya	0.87	0.65-1.16
Syphilis	Prevalence	Uganda	1.14	0.75-1.65
	Prevalence	Kenya	1.23	0.41-3.65
	Incidence	Kenya	0.66	0.51-0.86
Genital Ulcer Disease		Uganda	0.54	0.46-0.66

Conclusions (2/2)


• MC had no effect on syphilis in the Uganda and Kenya trials, but:

• MC had no effect on Ng, CT and Tv among men in the trials, except in as

Ugandan women with circumcised partners has lower symptoms of Tv and Bv

treated analysis in South Africa

 A recent analysis of among PrEP participants, MC reduced incident syphilis among HIV infected men and female partners of both infected and uninfected men

 In the Uganda trial, MC lowered HPV risk in female partners but had no effect on their acquisition of HSV-2

PART 2: MALE CIRCUMCISION DEVICES

- Introduction to Part 2
- Long term follow up of circumcised men in the randomized controlled trials showed sustained reduction in HIV acquisition: 73% in Uganda after 5 years (1) and 58% in Kenya after 7 years (2)
- In South Africa, VMMC rollout led to significant reduction in HIV incidence by 57-61% [3]
- WHO/UNAIDS estimate that 20.8m circumcisions are needed to achieve 80% coverage in 14
 priority countries in Africa and avert 3.4m infections by 2025
- About 9.1m circumcisions were performed in these countries between 2008 and 2014
 A key obstacle to rapid rollout of VMMC is the technical difficulty of surgical techniques
 recommended by WHO/UNAIDS: forceps guided, sleeve resection and dorsal slit
- These techniques take around 15-30 minutes, and require highly trained providers (physicians in a number of counties) and relatively sterile environments
- Simplified VMMC methods, such as devices, could greatly facilitate rollout.
- Two adult VMMC devices have been prequalified by WHO: PrePex, in 2013 and Shang Ring, in 2015.

[1] Gray et al., AIDS 2012; 26(5)609-15; [2] Mehto et al., AIDS 2013: 27(18)2899-907; [5] Auvert et al., PLoS MED 2013: 10(9);e1001509

PREPEX MALE CIRCUMCISION SYSTEM (Circ MedTech Ltd, Tartola, British Virgin Islands)

PrePex[™] – Background

- PrePexTM is a single use, disposable device consisting of an inner ring, elastic outer ring, placement ring, verification thread and sizing accessory
- Works by compressing the foreskin and cutting off circulation, leading to necrotic foreskin which is then removed after 7 days

- Requires no sutures, no injectable anesthesia (uses anesthetic cream), no sterile (but clean) settings, and no bleeding during placement or removal
- · Easily used by trained lower cadre health care providers
- Prequalified by WHO on 13/May/2013 following 8 studies of 2,417 men in Rwanda, Uganda and Zimbabwe

Safety study	Rwanda	55 healthy, HIV-negative clients	Physicians and Nurses
Randomized comparison with surgery	Rwanda	144 PrePex, 73 surgery (dorsal slit)	Physicians and Nurses
Pilot study	Rwanda	49 healthy, HIV-negative men	Nurses
Field study	Rwanda	666 generally healthy men (5 positive)	Lower cadre Nurses
Safety Study	Zimbabwe	53 HIV-negative men	Physicians and Nurse Assistants
Randomized comparison with surgery	Zimbabwe	240 HIV-negative men	Physicians and Nurse Assistants
Field Study	Zimbabwe	641 HIV-negative men	Nurses, with physician back-up
Two field studies	Uganda (IHK) Uganda (Rakai)	634 healthy men 187 HIV-negative men	Surgeons, Medical Officers, Clinical Officers, Nurses Not stated
Safety/acceptability study	Kenya	477 HIV-negative men	Clinical Officers and Nurses
Safety/acceptability	Kenya	HIV-positive men (ongoing)	Clinical Officers and Nurses
Active surveillance study	Kenya	≥1,000 HIV-negative men (ongoing)	Clinical Officers and Nurses

Results from Comparative Trials: Pre-Pex & Conventional Surgical Methods

	Time studies	(notes	
	PrePex	Surgery		
Total placement and removal time	5.7 min.	19.2 min.	After application of anesthesia	
Adverse events: Moderate/Serious	Serious: 0.4% Moderate: 0.7%	<1%	Serious: Device displacement (sex, masturbation, erection, spontaneous dislodging); early self removal; wound disruption; meatal injury at removal)	
Satisfaction with cosmetic result	99%	"similar"	≈90% would recommend procedure to someone	
Pain (on Visual Analog Scale of 1-10) (Kenya Safety and Acceptability Study)	Placement: 0.5 Removal: 5.3 Erection: 3.2	"comparable	Intense at removal, but fleeting and returns to 1.5 soon after	
Preference	60% Uganda 84.6% Moz.	40% Uganda 15.4% Moz.	79% of men concerned with offending odor from nectrotic skin	
Successful placement / Removal	92.6% / 99.5%	N/A	 5-7% not suitable for circumcised with device 99% returned for device removal 5-7 as recommended 	

SHANG RING MALE CIRCUMCISION DEVICE

(Wu Hu SNNDA Medical Treatment Appliance Technology Co. Ltd, Wu Hu City, China)

 Shang Ring is a sterile, single use, disposable device consisting of 2 concentric plastic rings – inner and outer rings – that interlock; remains in place for 5-7 days and requires no suturing

- Comes in 32 sizes (for all ages, from neonates to adults); approved for sale and use in EU & USA
- Over 600,000 circumcisions have been performed in China since 2005 using Shang Ring
- 3 studies in China showed that Shang Ring is safe, acceptable and easy to use
- 5 studies have been conducted in Kenya, Uganda and Zambia and confirmed safety, ease of use and acceptability profiles observed in China
- Following these studies, the device was prequalification by WHO in May 2015

Clinical Evaluation of Shang Ring in Adult African Men

Study [type of study]	Reference	Location	Year	Number and type of participants
Safety Study [case series]	Barone M, Ndede F, Li PS et al. JAIDS. 57:e7-e12. 2011	Kenya (1 site)	2009	40 healthy HIV-negative men≥18 years old
Spontaneous Detachment Study [comparative trial]	Barone M, Awori Q, Li PS et al. JAIDS. 60(3):e82-9. 2012	Kenya (1 site)	2010/11	50 healthy HIV-negative Men ≥18 years old
RCT Conventional vs Shang Ring [comparative trial]	Sokal D, Awori Q, Barone M, et al. AIDS 2012. 2012	Kenya (1 site) Zambia (1 site)	2011	400 healthy HIV-negative men ≥18 years old 200 allocated to Shang Ring circumcision and 200 to conventional circumcision
Field Study [field study]	Sokal D, Li PS, Zulu R, et al. JAIDS, epub ahead of print. 2014	Kenya (7 sites) Zambia (3 sites)	2012	1211 healthy men≥18 years old HIV-negative and HIV positive
Acceptability & Safety [field study]	Kigozi G, Musoke R, Watya S, et al. JAIDS. 63:617-621. 2013	Uganda (1 site)	2011/12	621 healthy HIV-negative men ≥18 years old 508 chose Shang Ring circumcision 113 chose conventional surgical circumcision

Results from Comparative Trials: Shang Ring & Conventional Surgical Methods

	Kenya a	k Zambia	Uganda		
Mean duration of procedure	7 min.	20 min.	6 min.	18 min.	
Adverse events	7.6%	5.0%	1.0%	0.9%	
Pain 1 hour post-op**	3.8	3.4	Not reported	Not reported	
Very satisfied or satisfied with appearance	92.4%	75.6%	99.8%	98.2%	
Complete healing	Mear	n days	At 4 v	veeks	
	44.1 days	38.9 days	84.0%	98.2%	
Men's preference			81.8%	18.2	

*Kenya - forceps guided, Uganda & Zambia – dorsal slit **Pain using Visual Analog Scale of 1-10:0 = none; 10 = worst possible Significant differences are in red

Observations with programmatic implications

Shang Ring ongoing studies:

- Spontaneous detachment; use of topical cream instead of injectable lidocaine (Kenya)
- Using every other size so that the number of sizes that one could need to stock can be reduced (Zambia)
- ShangRing has received registration for use in clinical practice in Kenya (June 2015)
- PrePex new developments with programmatic implications:
- Many adolescents ineligible due to phimosis and adhesions
 - WHO lists 53% for 13 year olds, 40% for 14 year olds, and 29% for 15 year olds ineligible
- Risk of tetanus infections in PrePex need for TT vaccination prior to placement.
- ??? Use in remote settings: Early displacements / self-removals after the onset of necrosis and before all circulation to the distal foreskin has stopped

- VMMC devices are safe and highly acceptable among African adults, hence a $viable\,option\,for\,scaling\,up\,\,of\,\,\mathsf{MMC}\,in\,sub-Saharan\,\mathsf{Africa}$
 - Shang Ring most suitable for adolescents
- Both clients and providers preferred devices to conventional surgical methods
- Performed efficiently by non-clinicians thus can address human resource shortfalls
- No need for sterile setting hence availability of theater space not huge limitation • However,
 - Train service providers on surgical procedures as well to serve those ineligible for device placement or address AEs.

Acknowledgements

- Reviewed the presentation and gave useful feedback:
- Allan Ronald, University of Manitoba Helen Weiss, London School of Hygiene & Tropical
- Medicine
- Tim Farley, Sigma3 Services, Nyon, Switzerland; formerly WHO Technical Advisor on VMMC Devices
- Mark Barone, Engenderhealth Supriya Mehta, Department of Epidemiology and •
- Biostatistics, University of Chicago, Illinois
- Benard Ayieko, Head, VMMC Program at Impact Research and Development Organization
- Provided administrative support: Rosemary Onayngo, Impact Research and Development Organization, Kisumu, Kenya
- Grit-Noelle Wango, Afya Bora Fellow, Centers for Disease Control and Prevention, Kisumu, Kenya Virginia Akach, Impact Research and Development Organization, Kisumu, Kenya

