An Exploratory Aggregate Analysis of Interstate Highway Bridge Deck Expenditure & Condition

SeyedAli Ghahari, Julie Qiao, Samuel Labi

I Ith International Bridge & Structures Management Conference April 25-27, 2017 Mesa, Arizona, USA

Introduction

Data and Methodology

Results and Discussion

Concluding Remarks

04/27/2017

PURDUE UNIVERSITY

Data

Methodology

Introduction

PURDUE

Data & Methodology

Results & Discussion

Conclusion

References

Part I:The Relationship between Deck Condition and Deck Expenditure

- Response variable:
 - Rehabilitation and maintenance expenditure (EXP) in \$2010.

Explanatory variables are

- deck condition in previous year (Cond)
- freeze index (FRZ)
- total deck area of bridges in the state (AREA)
- traffic loading (annual average daily truck traffic (AADT)).
- Model form $Total_EXP = \beta_0 + \beta_1 Cond + \beta_2 FRZ + \beta_3 AADT + \beta_4 AREA$

9/26

04/27/2017

PURDUE UNIVERSITY	Results								
	Part I.The Relationship between Condition and Expenditure								
Introduction	Inverse relationship between the deck condition and the expenditure								
	– A lower average condition in one year leads to higher expenditures the following year.								
Data & Methodology	• The higher the total area of bridge deck, the higher the total expenditure per ft ² (but relationship is non-linear; hence, scale economies exist)								
Results & Discussion	• A higher freeze index is generally associated with higher expenditure. $Total_EXP = \beta_0 + \beta_1 Cond + \beta_2 FRZ + \beta_3 AADT + \beta_4 AREA$								
	R-squared	0.3734	Adj R-squa	ared		0.3177	Root MSE	3.1e+5	
Conclusion			Coef.		P> t	[95% Conf. Interval]			
	AVG DECK COND	ITION (NBI)	-382373.4	-2.17	7	0.035	-736482	-28264.75	
References	TOTAL DECK		0.004872	2.91		0.006	0.0015	0.0882	
	FREEZE INDEX		29.7635	0.35		0.730	-143.1713	202.6985	
	AVG TRUCK TRAFFIC		0.01444	1.32		0.194	.007628	0.0365110	
04/27/2017	Constant Term		2562771	2.27	,	0.028	289499	4836043	

Results

PURDUE UNIVERSITY	Conclusion
Introduction	 The framework shows how oversight agencies can increase the <u>overall accountability</u> of individual highway agencies.
 Data & Methodology Results & Discussion 	 The observed differences in the state performance could be due to differences in: Agency <u>supervision/audit quality</u> Work <u>culture</u> in the agency <u>Geotechnical conditions</u> in the state Design/construction <u>practices</u> <u>Material</u> quality in the state's quarries
Conclusion	 Results can help agencies seen/perceived as poorly performing, to carry out <u>critical self-assessment</u> to:
References	 identify the possible causes of such performance or investigate reasons for any misperception.

PURDUE UNIVERSITY

Future Work

Introduction

Data & Methodology

Results & Discussion

Conclusion

References

 Key Assumption In Current Paper: One (1) degree-day of FRZ and One (1) truck have equivalent effects on deck damage, and hence on deck repair expenditure.

- Future papers could relax the above assumption by:
 - Establishing appropriate weights between the deterioration factors and use these weights to determine the agencies' quadrant positions
- Consider other model specifications; e.g., the lagged panel model.
- Consider average statewide values of other design variables that:
 O Constitute "stressors" or "strengtheners" of deck condition
 - Measure the stability of the state quadrant position (performance ranking) across the years
- Extend the work to the other bridge components (superstructure and substructure) and other highway functional classes

PURDUE UNIVERSITY	Key References			
Introduction	 U.S. Department of Transportation. Policy and Governmental Affairs, Office of Highway Policy Information. 2016 [cited 2016 11-10-2016]; Available from: http://www.fhwa.dot.gov/policyinformation/statistics/2012/. 			
Data & Methodology	 U.S. Department of Transportation. NBI ASCII files, Bridges & Structures, Federal Highway Administration. 2016 [cited 2016 11-10-2016]; Available from: https://www.fhwa.dot.gov/bridge/nbi/ascii.cfm. 			
Results & Discussion	 U.S. Department of Transportation, Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation's Bridges. Federal Highway Administration, 1995. FHWA-PD-96-001: p.p. 1-124. 			
Conclusion	 National Climate Data Center. U.S. Local Climatological Data. 2016 [cited 2016 11-10-2016]; Available from: https://www.ncdc.noaa.gov/data-access/quick- links#loc-clim. 			
References	 Liao, T., I. Kumar, M. Dojutrek, and S. Labi, Updating Secondary Climate at Tributes for Purposes of Transportation Infrastructure Management, in Journal of Infrastructure Systems2017. 			

04/27/2017

