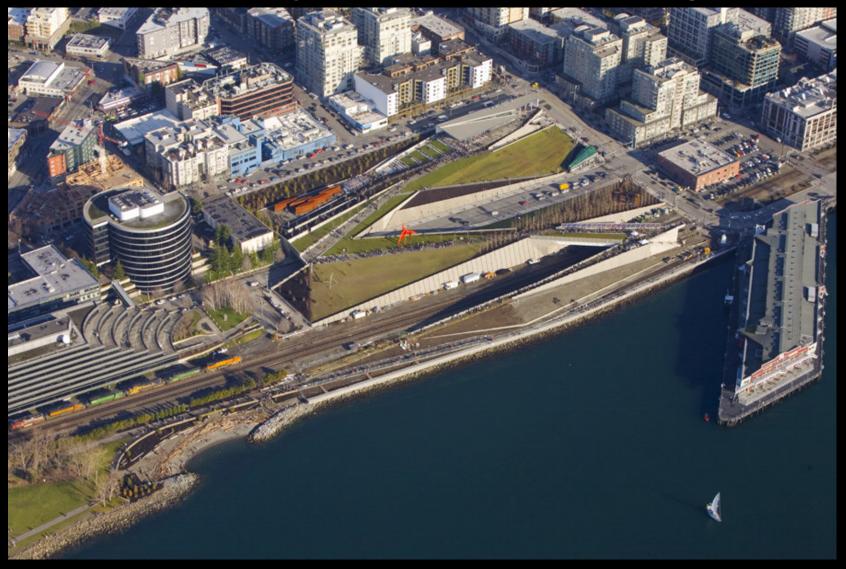
MAGNUSSON KLEMENCIC ASSOCIATES

Green Roofs: Restoring Urban Landscapes One Roof at a Time

Brian Taylor, P.E. March 2010

WSU LID Workshop, Puyallup

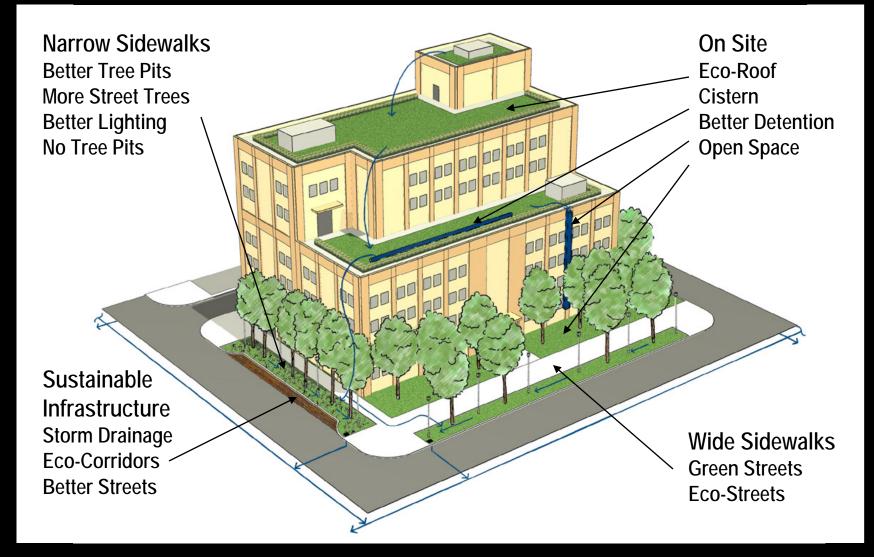

Overview

- Introduction
- Green Roof Benefits
- Types of Green Roofs
- Design & Installation
 - Components
 - Factors & Considerations
- Post-Installation
- Retrofits
- Stormwater Performance

Architecturally Focused Civil Engineering

Architecturally Focused Civil Engineering

Sites To Mimic Nature



PRECIPITATION

TRANSPIRATION

CANOPY INTERCEPTION AND EVAPORATION

Urban Green

Green Roofs

Source: www.roofscapes.com

"Living Roofs"

"Vegetated Roofs"

"Eco-roofs"

Source: www.roofscapes.com

"Roof gardens"

Green Roof Components - Overview

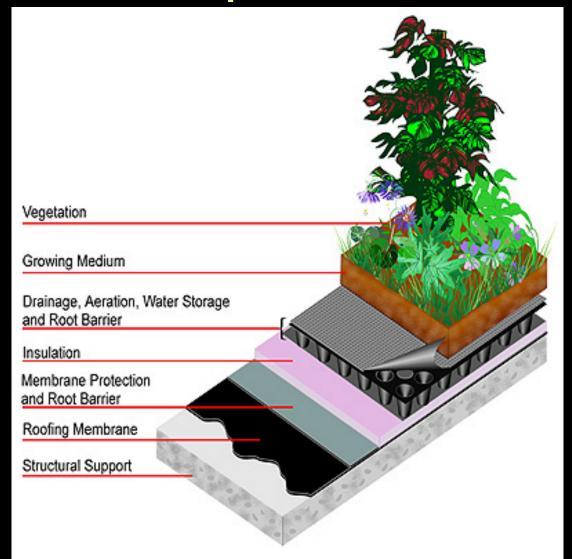


Image: www.lowimpactdeveloment.org

Benefits

- EcologySocial
- Noise Reduction
- Energy and Heat
- Economy
- Stormwater

Ecology: Habitat & Biodiversity

Laban Dance Centre, London

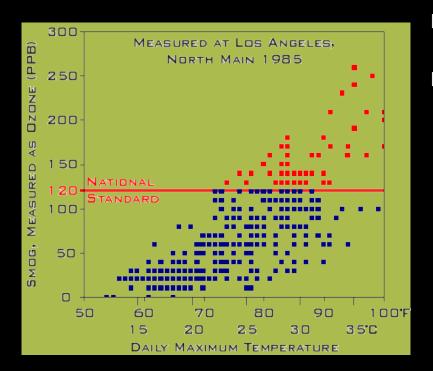
Source: www.greenroofs.com

- Wildlife habitat
- Demonstrated success when targeted to species

Black Redstart

Ecology: Habitat & Biodiversity

Killdeers Source: www.roofscapes.com



Birdhouse with Green Roof Source: Barry Taylor

Ladybug

Ecology: Air Quality

Increased temperature = increased smog

 Particulates trapped
 Secondary benefits from reduced temperature

Social

Green roof at nursing home

- Faster healing
 Happier, more content, less
 - stressed
- Increased productivity
- Reduced sick days

Roofs have major role in building energy consumption

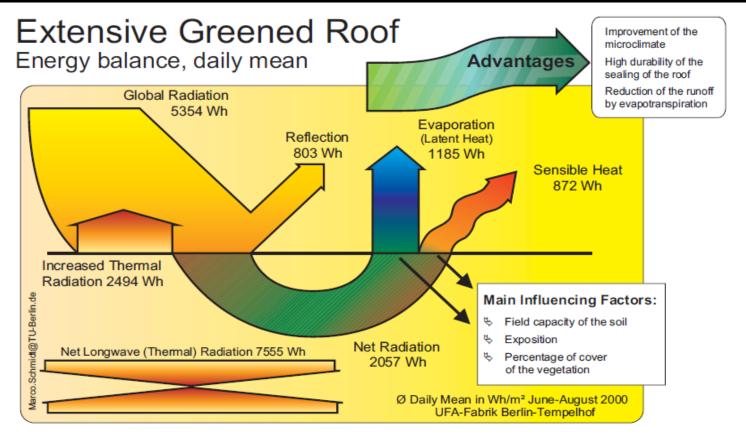
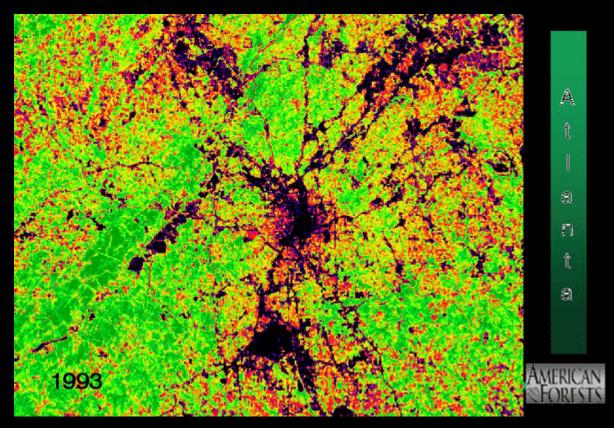
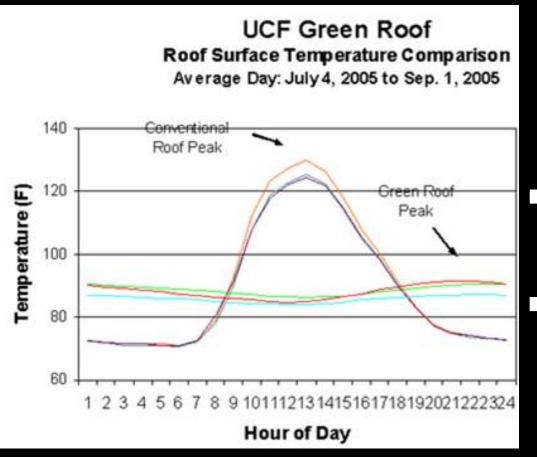




Fig. 4 Extensive greened roofs transfer 58% of net radiation into evapotranspiration during the summer months, UFA Fabrik in Berlin, Germany

Source: Marco Schmidt

Traditional roofs & pavements contribute to urban heat island

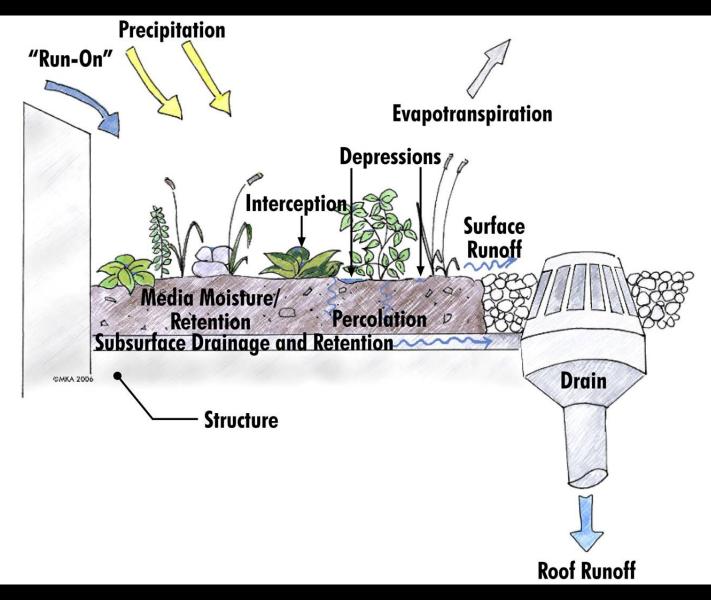
Moderate roof temperature Thermal mass **Evapotranspiration** Reduce heat stress on roof membrane **Reduce ambient air** temperature

Source: Jeffrey K. Sonne, Florida Solar Energy Center

Source: www.roofscapes.com

- Improve mechanical efficiency
- Improve solar efficiency
- Reduce greenhouse gases from heating/cooling

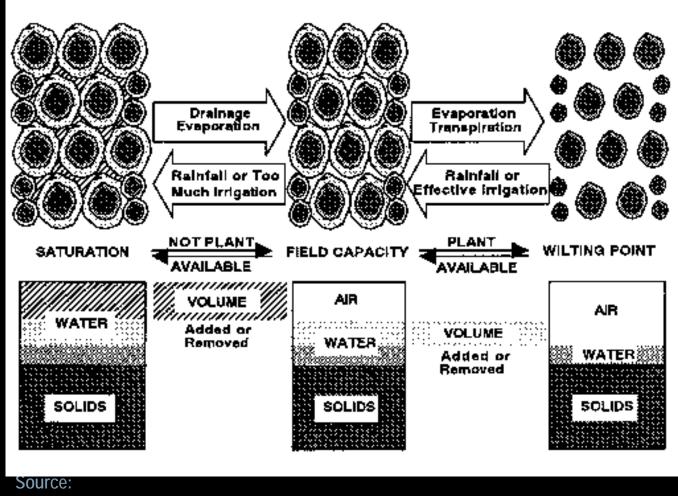
Source: U.S. EPA Region 8


Economic

- Reduce size of HVAC equipment
- Extend roof membrane life
- Higher lease rates
- Higher productivity
- Incorporate function...
 - Water treatment
 - Food production

Source: www.greenroofs.com

Green Roof Hydrologic Processes



Stormwater Control Factors

- Thickness of media
- Media hydraulic properties
- Type of drainage layer used
- Properties of drainage layer
- CLIMATE!
 - How much time is available to "recharge" media
 - Evapotranspiration rates driven by temperature, humidity, windspeed, and solar radiation

Green Roof Components – Growing Media

Moisture retention & plant water availability

www.bae.ncsu.edu

Green Roof Categories

Intensive: 6" or thicker

- Semi-intensive: 25% above or below 6"
- Extensive: up to 6"

Source: Green Roofs for Healthy Cities

Green Roof Categories: Intensive

- "Roof garden" with trees, shrubs, etc
- Often accessible
- 50+ psf
- Expanded planting palette
- Highest cost
- Highest maintenance

Source: Green Roofs for Healthy Cities

Green Roof Categories : Intensive

Millennium Park, Chicago

Source: www.greenroofs.com

Green Roof Categories : Semi-Intensive

- May be turf/lawn
- May be accessible/partially accessible
- 35-50 psf
- Moderate planting palette
- Take advantage of roof capacity
- Moderate cost/maintenance

Source: Green Roofs for Healthy Cities

Green Roof Categories : Semi-Intensive

Vancouver Public Library

Source: www.greenroofs.com

Green Roof Categories : Semi-Intensive

Seattle Art Museum/WAMU

Green Roof Categories : Extensive

- Lightweight
- Larger areas
- 12-35 psf
- Somewhat limited planting palette
- Typically inaccessible
- Lowest maintenance & cost
- Amenable for retrofits

Source: Green Roofs for Healthy Cities

Green Roof Categories : Extensive

• Whistler Daycare Centre, B.C.

Source: BCIT

Green Roof Categories : Extensive

MKA Green Roof Evaluation Test Plot

Green Roof System (Modular)

Image: www.greenroofplants.com

Image: www.greenroofblocks.com

Green Roof Systems

Modular

- Trays or "bags"
- Can pre-plant off-site
- Quick installation, simpler coordination
- Easier roof repairs

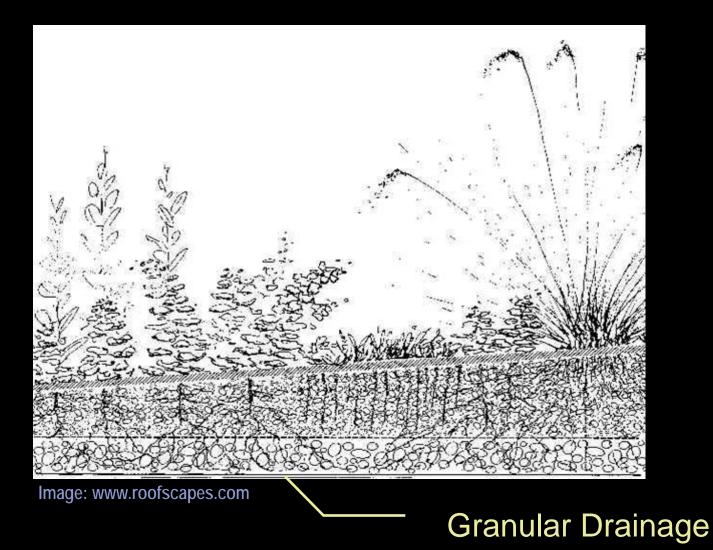
Green Roof Systems

- Modular (cons)
 - Expense of modules
 - Gaps & exposed membrane
 - Weight of loaded trays
 - Irrigation constraints

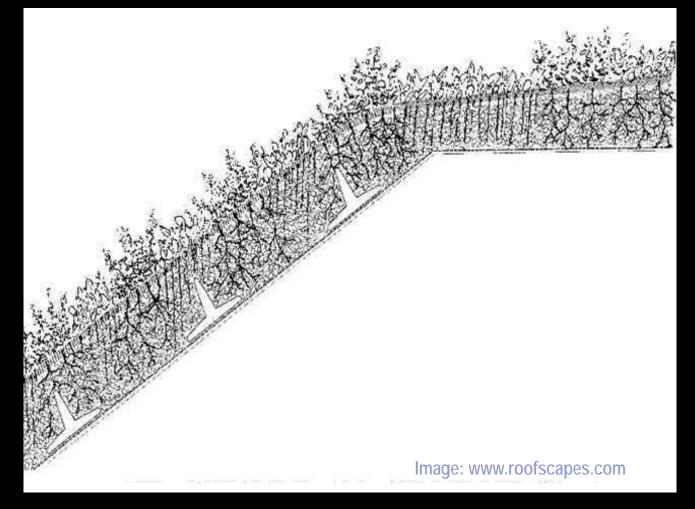
Green Roof System (Multi-course)



Figure 3: Extensive (shallow) green roof system


Source: NRCA Green Roof Systems Manual

Green Roof System


Loose-laid or Built-Up

- Established practice
- Amenable for new construction
- Likely to provide enhanced benefits
- Horticultural benefit

Green Roof System (Multi-course)

Green Roof System (Single-Layer)

"What kind of roof can be vegetated?"

.....just about any!

"Flat" roofs

Chicago Wal-mart Source: www.roofscapes.com

Ford Rouge River Plant Source: www.greenroofs.com

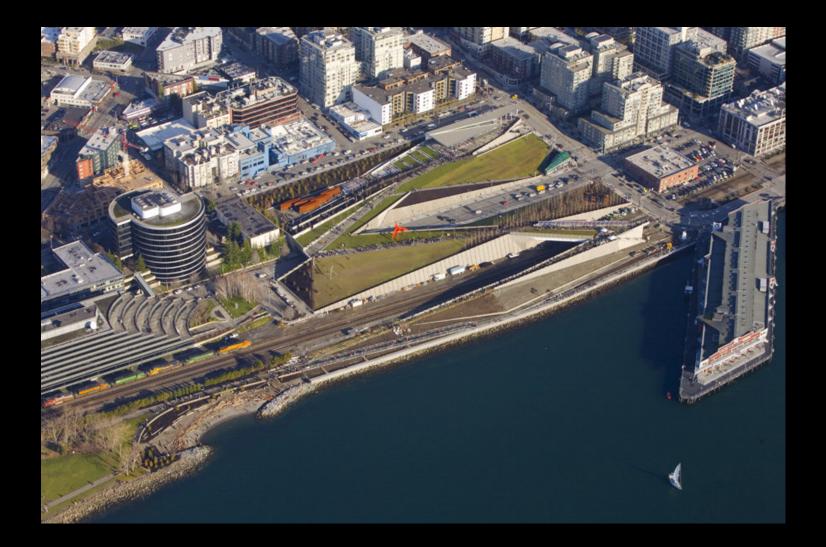
Sloped roofs

Source: www.roofscapes.com

High-rises

Chicago
111 S. Wacker
51-story bldg
High wind

Wood frames



Zoomazium, Seattle

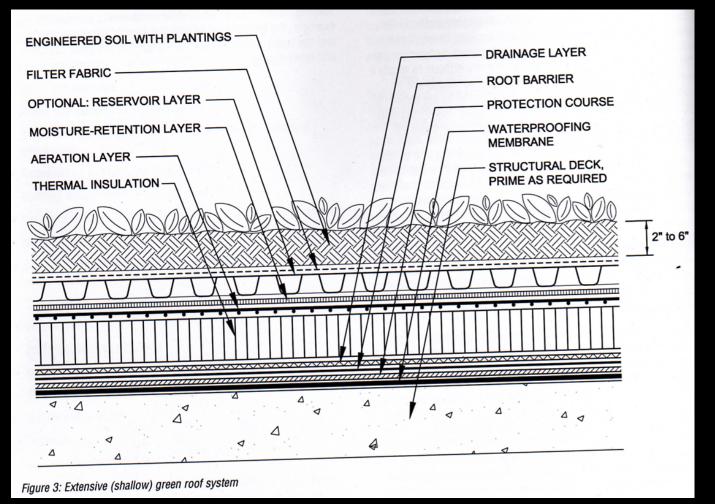
- New construction
- Native plantings

Bridges/structures

Green Roof Standards

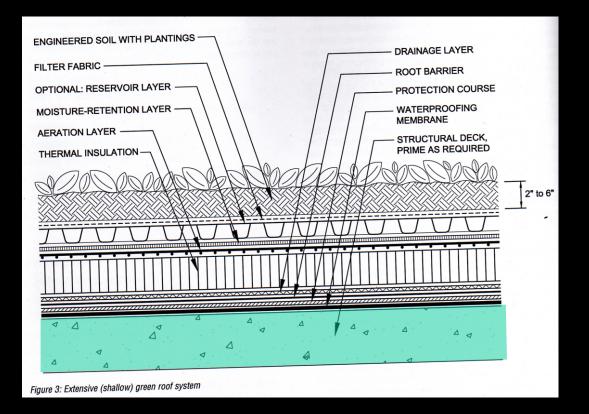
- U.S.
 - ASTM tests for media properties
 - The National Roofing Contractors Association (NRCA) Green Roof Systems Manual
- International (Germany)
 - F.L.L. (Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau)
 - "Guideline for the Planning, Execution and Upkeep of Green-Roof Sites"

Green Roof Guidance & Resources


Green Roofs for Healthy Cities

- Conference
- Training workshops
- Designer certification
- Experienced practitioners
 - Vendors
 - Consultants
- Greenroofs.com website
- Conservation Technology, Inc.

Green Roof Design Teams


Architect

- Roofing & flashing details
- Building integration
- Green roof/landscape designer
 - Green roof components & plants
- Growing media consultant
- Roofing consultant/building envelope specialist
 - Waterproofing design
- Engineers
 - Structural, Mechanical, Civil
- Leak Detection Specialist
- Irrigation Specialist

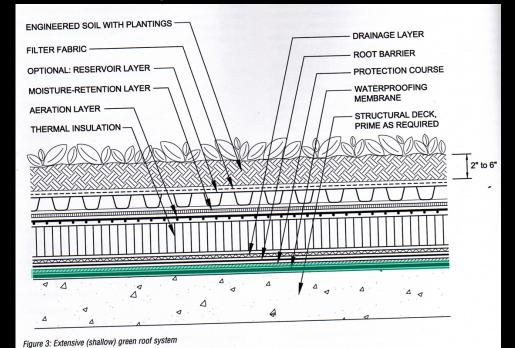
Source: NRCA Green Roof Systems Manual

Roof Deck Concrete, Steel, or Wood, typ.

Roof Deck

- Structural -
- Extensive green roofs 10-50 psf
- 6-inch extensive say 40 psf typ.
- Structural Engineering Analysis critical

Green Roof Weight

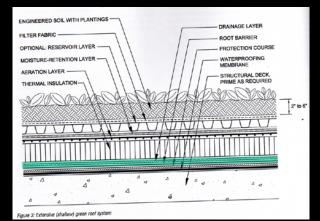

Thickness	Weight (psf)
1-in (vegetated mat)	8-15
2-in	10-22
4-in	22-34
6-in	33-51
8-in	47-65

Roof Deck

- Insulation above or below waterproofing membrane
- Coordinate architectural details with green roof assembly (insulation, vapor barrier locations, and venting)
- Building Envelope consultant

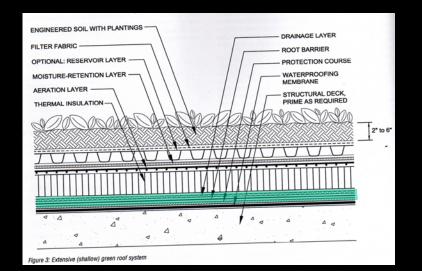
Waterproofing membrane

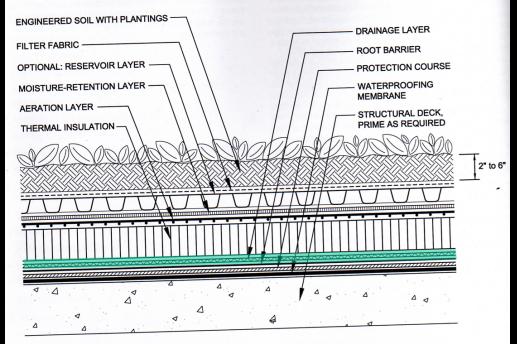
- Loose laid (ballasted)
- Bonded (adhered)
- Mechanically attached


- Waterproof membranes
 - Waterproof vs. water-shedding
 - Use a quality membrane
 - Proven track record
 - Durability, UV resistance
 - Root resistance varies
 - Puncture resistance
 - Retrofit compatibility

- Types of membranes
 - Built-up (layers of felt/fabric & bitumen)
 - Fluid applied
 - Elastomeric EPDM (sheets of rubber-like material)
 - PVC/TPO
 - Others

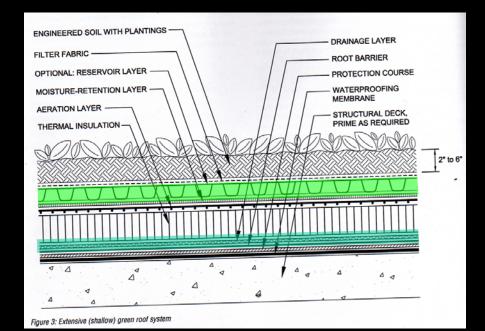
American Hydrotech MM6125[®] monolithic fluid applied rubberized asphalt membrane


- Protection Course
 - Protects membrane from damage
 - Boards, sheets, mats
 - Sometimes insulation used



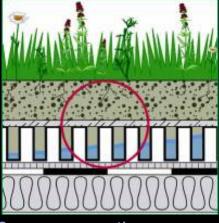
Root Barrier

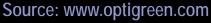
- Polyethylene sheets (10 mil min.)
- HPDE boards
- Some EPDM, PVC, TPO membranes
- Root inhibitors


Drainage layer (Roofing perspective)
 Relieves hydrostatic pressure
 Allows insulation to breathe

Drainage layer (vegetated roof perspective)

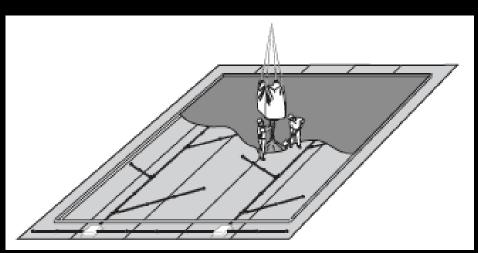
- Prevents over-saturation of growing media
- Detains storm runoff


- Two Basic Options: Granular and Non-Granular
 - Non-granular: mats, boards, & modules
- Factors
 - Slope
 - Weight
 - Compressive strength
 - Site conditions


Properties

- Porous to permit water movement
- Transmissivity related to catchment area
- Permeability 425+ in/hr for granular media
- Continuous coverage
- Compressive strength for overburden and traffic

Non-Granular "Open" Drain Layer Products
 Transmissivity & strength
 Moisture retention

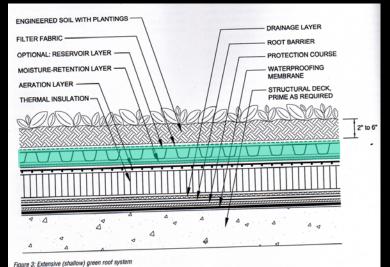


- Granular Drainage
 - Light weight aggregate (e.g. pumice)
 - Open graded (highly porous)
 - Refer to FLL for info

Source: www.roofscapes.com

Source: © www.conservationtechnology.com

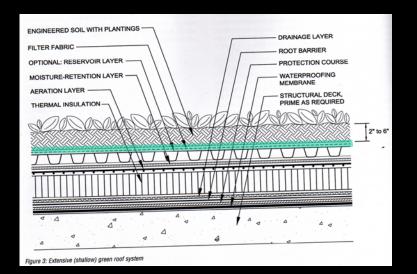
- Internal drains and retention edges
- Refer to NRCA for flashing and retention edge placement details
- See Conservation Technology, Inc.'s Green Roof Manual for additional information

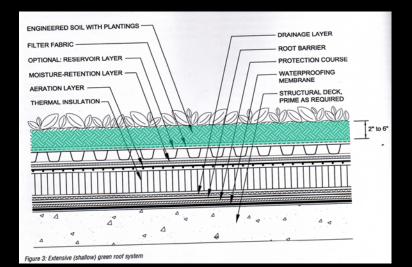


Source: Conservation Technology, Inc.

Source: www.optigreen.com

- Moisture Retention Layer
 - Waffle boards or mats
 - Similar benefit can be achieved by using more growing media
 - Often integrated with drainage or protection layers

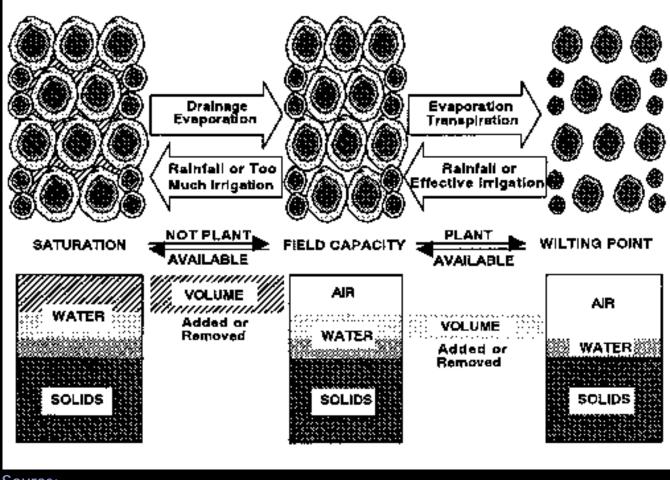

Moisture Retention Layer


Filter Fabric

 Geotextile fabric placed beneath growing media to retain fine particles

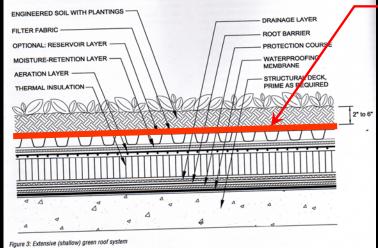
Resistant to weathering and puncture

- Growing Media
 - Light-weight mineral components
 - FLL guidelines: low organic
 - Sustains vegetation
 - Retains moisture


Green Roof Components - Growing Media

Requirements

- Permeable (to prevent over-saturation)
- Light-weight (to reduce roof load)
- Fire-resistant
- Stable versus sliding & slumping
- Frost-resistant
- Compression resistant
- Nutrient and chemical properties proven compatible with horticultural growth (ph 6.5-8.0, etc)
- Free of foreign substances


Green Roof Components - Growing Media

Moisture retention & plant water availability

Source: www.bae.ncsu.edu

Why not use topsoil?
Light-weight mineral components
Permeable (to prevent over-saturation)
Stable versus sliding & slumping
Free of foreign substances
Sustains vegetation

Fine particles can seal filter material

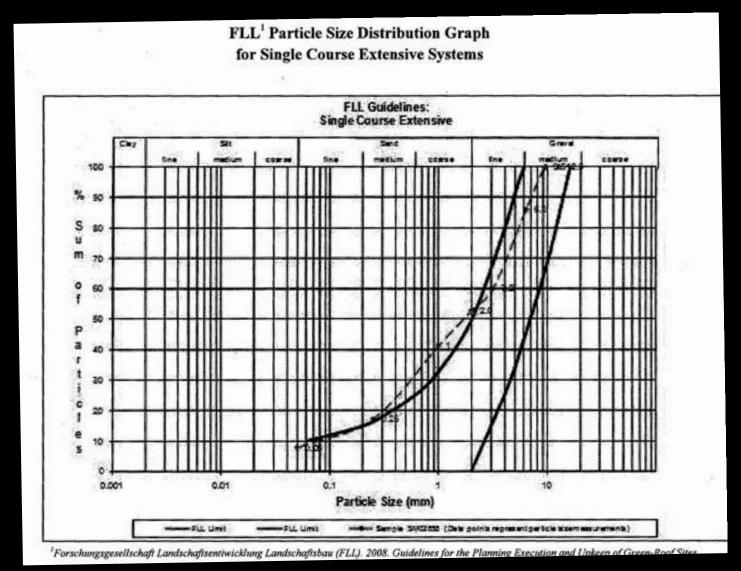
Specifying Growing Media

- Example of an Extensive Growing Media Blend
 - Coarse lightweight aggregate: 40-80%
 - Organic material: 0-25%
 - Sand or fine lightweight aggregate: 0-35%
 - Air content at max. water capacity: 15% at 45%
- Example of an Intensive Growing Media Blend
 - Coarse lightweight aggregate: 35-60%
 - Organic material: 5-20%
 - Sand or fine lightweight aggregate: 25-50%
 - Air content at max. water capacity: 10% at 35%

Source: Green Roofs for Healthy Cities, as adapted from Friedrich 2005

Green Roof Components - Growing Media

Organic Content (FLL Guidelines)


- Depends on the weight of materials and type of roof
- Intensive lightweight <12% by mass</p>
- Extensive lightweight <8% by mass</p>
- Extensive single course <4% by mass</p>

Source: FLL

Green Roof Components - Growing Media

- Granular Distribution
 - FLL is common standard for inorganic component of media blend
 - Different blends for intensive, multicourse extensive, & single-course extensive
 - Sand & gravel size, typ.
 - Refer to FLL or media supplier (Roof-lite, Roofscapes, American Hydrotech, etc)

Specifying Growing Media

Green Roof Components - Growing Media

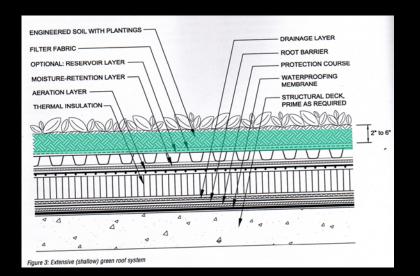
- Water Holding Capacity
 - Field capacity, "Maximum Water Capacity" (ASTM test): moisture retained by saturated media after free-draining, 40-60% typ.
 - Wilt point: moisture retained by media that cannot be removed (aka wilt point), 12-18% typ.
 - Available moisture for plants is the difference
- Pore volume: allows movement and temporary storage of moisture, 10% min.
- Permeability 3+ in/hr

Green Roof Components - Growing Media

- Other Properties
 - Void Space
 - Cation Exchange Capacity
 - Carbonate Content
 - ∎ pH
 - Nutrients
 - Salts

Key Media Parameters for Storm Control

- Media composition (% organic)
- Maximum water content (field capacity)
 - 35 50% typ.
- Saturated/dry weights
- Saturated Hydraulic Conductivity (permeability)
 0.001 to >1.0 cm/s (!)


Specifying Growing Media

- Quality Assurance
 - Test growing media delivered to site
 - Spot checks on roof for uniformity
 - Avoid separation of components during handling

Source: Green Roofs for Healthy Cities

Green Roof Components

- Plants: Planting conditions
 - Extensive: harsh environment for plants; wind, exposure; often not irrigated
 - Intensive: deeper soil enables large plants; typically irrigated

Green Roof Components

- Common Plants
 - Succulents
 - Grasses
 - Herbaceous


Green Roof Plants

 Succulents use crassulacean acid metabolism (CAM) to minimize water loss

Sedums

Sedum oreganum

Green Roof Plants

 Succulents also have fewer stomata
 Sempervium
 Delosperma

Green Roof Components

Proven Pacific Northwest Plants (unirrigated)

- Sedum
- Sempervium
- Delosperma
- Coastal Strawberry

Green Roof Components

- Planting Methods
 - Vegetated mats
 - Pre-planted modules
 - Seeding
 - Cuttings
 - Plugs
 - Container Plants (small!)

Source: www.optigreen.com

GREP Plant Progression

Green Roof Components

- Plant Irrigation
 - Required until establishment (3 yrs)
 - Drip or sub-surface recommended
 - Capillary systems available

Green Roof Costs

- Always use a quality waterproofing membrane (est. \$5-\$10/sf)
- Allow \$7-\$20/sf additional for the green roof
- Economy of scale
- Warranty likely to increase cost
- Leak detection system extra \$5-10K

Layout

- Gravel border
- Take advantage of structural capacity
- Window-washing
- Wind & micro-climate

Sloped roofs

- Greater than 2:12 requires analysis
- Engineer media for steeper condition
- Use structural restraining system
- Terrace the roof
- Consider soil moisture & plants

Sloped roofs: specialty geotextiles

Example: "EnkaRetain"

Consider geotextiles for slopes 2:12 to 3:12

Sloped roofs:Slippage restraint

Image: www.optigreen.com

SLOPETAME2

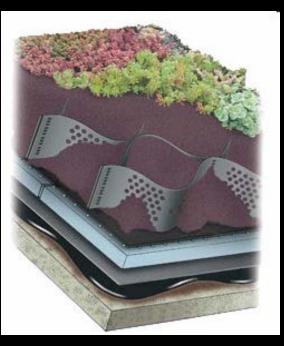
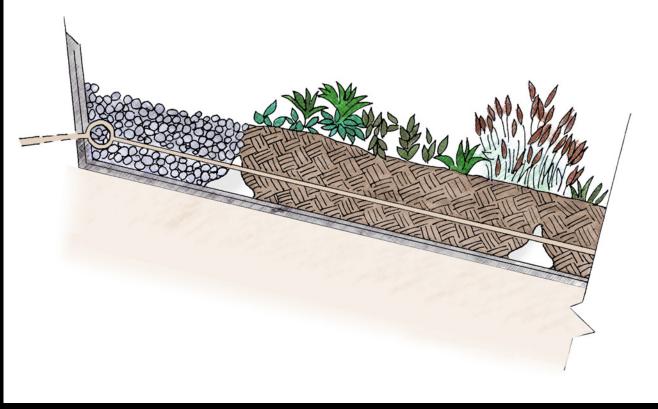
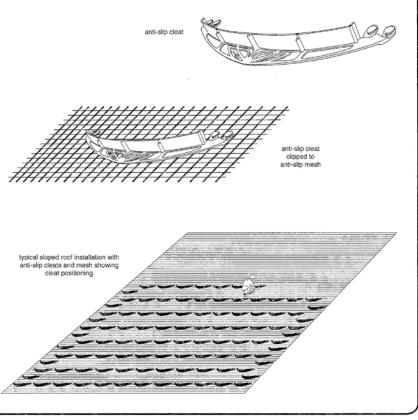



Image: www.hydrotechusa.com

Sloped roofs engineering

- Avoid slip-plane failures:
 Be careful what kind of drainage is used
- Where is the slippage being resisted structurally?

Sloped roofs: Cellular confinement


Sloped roofs:
 Cellular
 confinement

SLOPE STABILIZATION

When roof slopes reach 2:12, or approximately 10°, special precautions must be taken to prevent soil from sliding down the roof. Root-resistant waterproofing membranes must be fully adhered to the underlying roof structure: Independent root barriers or floating membranes are not recommended. Optigreen Drainage Mati su used in place of Drainage Plates or other plastic drainage substrates that cannot withstand the shear stresses on slopes. When slopes reach 3:12, or approximately 15°, it is essential to use a mechanical slope stabilization system. We offer two basic types to accommodate different roof architecture: one system transfers soil loads up the roof and one transfers soil loads down the roof.


18

ANTI-SLIP CLEATS AND MESH: This system offers a simple and inexpensive means to prevent soil sliding by transferring soil loads up the roof. Optigreen Anti-Slip Mesh is simply laid over Optigreen Drainage Mat and Optigreen Anti-Slip Cleats are clipped onto the mesh. The high-strength structural plastic mesh is mechanically fastened at the top of the roof, si gabled or barrel-shaped one side of the roof can be used to balance the opposite side. The row spacing of the banana-shaped plastic cleats varies form 10° to 50° depending on the roof slope. To distribute load on the mesh heach row is shifted one-quarter cleat from the row above and below and extra cleats are inserted between rows at edges to fill the voids.

Conservation Technology, Inc.

Sloped roofs: Cellular confinement

Sloped roofs:
 Cellular
 confinement

ANTI-SLIP TEES: In contrast with the cleat/mesh system, The Optigreen Anti-Slip Tee system transfers soil load down the roof to a structural parapet or fascia at the bottom of the roof slope. The system consists of two interlocking T-shaped plastic extrusions: the lower one follows the slope of the roof and the upper one crosses the slope of the roof. The lower tees are spaced approximately one meter (40") apart and the spacing of the upper tees varies from 10" to 50" depending on the roof slope. lower tee upper tee upper tees drop into notches in lower tees typical sloped roof installation with anti-slip tees

19

Sloped Green Roof Case Study

Sloped roofs: Slippage restraint

Image: www.hydrotechusa.com

Warranty

- Dialogue with waterproofing contractor/supplier
- May affect choice of system

Green Roof Costs

- Always use a quality waterproofing membrane (est. \$5-\$10/sf)
- Allow \$7-\$20/sf additional for the green roof
- Economy of scale

- Coordination of trades is critical
 - Waterproofing installer
 - Landscape crew
 - Mechanical equipment
 - Access to cranes/elevators

- Coordination of trades is critical
 - Waterproofing installer
 - Landscape crew
 - Mechanical equipment
 - Access to cranes/elevators
 - Mandatory Pre-Bid conference
- Pre-qualifying & bonding

- Allow time for test plots and material testing
- Pre-construction meeting
 - Address sequence & coordination needs
 - Identify when flood-testing to occur
 - Mechanical equipment
 - Access to cranes/elevators

- Safety
 - Trained crew / personnel
 - Fall protection systems (temporary & permanent)

- Material Handling
 - On- vs. off-site media blending
 - On- vs. off-site planting
 - Staging/stockpiling (do not exceed roof capacity)
 - Control moisture of media
 - Protect installed materials

- Media Conveyance & Handling
 - Prevent contamination
 - Prevent separation
 - Super-sacks (1.5 CY)
 - Small sacks
 - Blown
 - Evaluate media after placed, before planting

Installation Considerations

Mulch/matting

- Prevent wind erosion
- Discourage weed germination
- Reduce soil moisture loss
- Bird netting

Challenges – Birds

Maintenance

2- to 3-yr establishment period (80-90% coverage)

- Irrigation
- Watch for over-/under-compacted areas
- Monitor & repair steep slope sloughing
- Weeding
- Temporary mulch/matting
- Fertilization
 - Slow-release
 - May not be needed after first 5-yrs

"What types of existing buildings are suitable for green roof retrofits?"

Structural Considerations

- Building type overview
- Capacity per design load validation
- Building height
- Green roof placement
- Seismic

Capacity for Additional Roof Load (per typical design methods & procedures)

- Wood: worst
- Masonry: poor, maybe if seismically upgraded
- Steel: fair (newer) to best (older)
- Concrete: best

"How much green roof could be put onto an existing roof?"

Design Load Verification

- Snow load
- Load Swapping
- Plaza/Decks

Design Load Verification (cont.)

- Snow load
 - Drifting
 - True ground load: 20 ± vs. 25 psf design

Design Load Verification (cont.)

- Load Swapping
 - Ballast typically 10 psf ±
 - Concrete Sloping Slabs say 10 to 50 psf ±
 - Tiles

Design Load Verification (cont.)

 Plaza/Decks
 Live (e.g.100 psf) vs. dead load

Image: www.greengridroofs.com

Building Height

- Steel & Concrete...
 - Higher buildings (6 stories +) more likely to have capacity for extra load
- Designed for extra floors
 - Very likely to have spare capacity
- Wind
 - Over 10 stories GR design modifications

Seismic

- 2006 Seattle Bldg Code
 - Increase base shear >10% triggers seismic analysis
 - Expect to trigger seismic upgrade when adding green roof to URM

Seismic (cont.)

- Seismic upgrade
 - Improve roof-wall connections
 - Parapet bracing
 - Additional expense

Structural Screening Criteria

Favorable

- Steel / concrete framed
- 6 to 10 stories
- Large roof
- Design for extra stories (e.g. cardeck)
- Exist., removable topping (e.g. ballast, tiles)
- Existing plazas

Structural Screening Criteria (cont.)

Unfavorable

URM, wood frame

- Less than 6 stories
- Small roofs, parapets
- No previous seismic upgrade

Target Weight

- CASE-BY-CASE
- Likely 5-20 psf
- Assume 2-4 inch green roof thickness

Example: Park Place Building, Seattle

- Structural system
 - Concrete moment frame
 - Reinforced conc. slab roof
 - 10-ft beam spacing
- Design capacity
 - 60 psf live load (exist per design)
 - 25 psf snow load
- Safety
 - Exist parapets

Example: Park Place Building, Seattle

Green roof

- 4-inch extensive; 9,656 sf
- Proposed Loads
 - Mechanical: 30,000 lbs
 - Green roof: 40 psf
 - Live load: 20 psf
 - Snow load: 25 psf
- Overlay existing

Questions?

Brian Taylor, P.E. btaylor@mka.com www.mka.com