HIV infection of the CNS: Implications for cure

Lachlan Gray

Senior Research Office Churchill Lab

HIV Neuropathogenesis, Centre for Biomedical Research, Burnet Institute Department of Infectious Diseases, Monash University

HIV-1 cure

- Impact of combination antiretroviral therapy (cART) Reduced morbidity and mortality, restored life expectancy Treatment remains life-long, Expensive, Side-effects, Access
- Major barrier to cure is persistent viral reservoirs Integrated, replication competent, long-lived, latent
- cART has no/minimal long-term affect on viral reservoirs "Shock and kill" cure strategy aims to eliminate latency by reactivating virus using latency-reversing agents
- (ĹRA) The CNS remains an important, yet understudied,
- potential viral reservoir

Determining whether the CNS is a viral reservoir will be an important consideration for any HIV cure or eradication strategies

Is the CNS a viral reservoir? -

Indirect evidence of a viral reservoir in the CNS

- Ongoing immune activation
 - Levels of Neopterin remain elevated following suppressive therapy Hagberg et al., AIDS Res and therapy 2010; Eden et al., JID 2007; Yilmezet al., JAIDS 2008
- Evidence of axonal injury (NFL levels) in patients on suppressive cART Krut et al., 2014 PLoS One
- Symptomatic and asymptomatic CSF 'escape'
 - Dahl et al., JID 2014
 - Letendre et al., CROI 2009
 Eden et al., JID 2010
 Peluso et al., AIDS 2012

 - Canestri et al., Clin Infect Diseases 2010

Direct evidence of a viral reservoir in the CNS

Pre-symptomatic

Thompson et al., Am J Path 2011 Archival brain tissue from pre-symptomatic patients, isolated p24-ve perivascular macrophages by LCM, PCR of gag →Detected HIV-1 DNA in PVM, microglia and astrocytes

 HEF Presymptometic
 with Encentrality 200 300 400 500 800 GD4 T rail rec⁻⁻⁻

Asymptomatic

Churchill et al., Annals of Neurol 2009 Archival brain tissue from asymptomatic patients, isolated macrophages and astrocytes using LCM →1-3 % astrocytes +ve for HIV-1 Env DNA

1

Virally suppressed patient cohort for determining HIV persistence in the CNS

Does HIV persist in CNS cells from virally suppressed patients?

Subject	Age	Se	cART	CD4	Neurocog	Viral Load		Tissues							
code		х			Impair.	CSF	Plasma	Brain	CSF	Plasma	PBMC	Spleen			
N89	53	М	EFV, KTA, TZV	78	Mild	<50	<50	Yes	Yes	Yes	Yes	Yes			
N69	60	М	3TC, DDI, IDV	38	Mild	<50	<50	Yes	Yes	Yes	Yes	Yes			
T82	66	М	ABC, EFV, KTA	464	None	<50	<50	Yes	Yes	Yes	Yes	Yes			
C47	55	М	3TC, ATV, TFV	182	None	<50	<50	Yes	Yes	Yes	Yes	Yes			
C06	39	М	ABC, RTV, ZDV,	75	None	<50	<50	Yes	Yes	Yes	Yes	Yes			
C58	41	F	Yes/?	5	None	8000	75300	Yes	Yes	Yes	Yes	Yes			
T71	40	F	ATR, CBV, KTA	5	Mild	408	157009	Yes	Yes	Yes	Yes	Yes			

Laser capture micro-dissection (LCM) approach

- 5 patients that fulfilled the criteria of suppressed patients (N89, N69, T82, C47, C06) were selected.
- IHC (GFAP (astrocytes)/CD68 (macros))→4 patients were considered 'usable'
- LCM was performed on all viable tissue samples. For each patient macrophages were isolated and triple nested PCR performed for GAPDH and HIV-1 Env V3

.

No HIV DNA detected in the CNS of 4/5 virally suppressed patients

Patient ID	Sample type /cell #	#+ve PCR	reactions	Sequence determined	# Unique sequences		
		GPDH	V3				
C47	1	0/5	0/5	N			
	10	3/5	0/3	N	-		
	50	4/5	0/4	N	-		
	1000	4/5	0/4	N	-		
	>3000	5/5	0/5	N	-		
	Slabs	5/5	0/5	N	-		

.

HIV DNA detected in CNS and PBMC of 1/5 virally suppressed patients

Patient ID	Sample type /cell #	# +ve PCR	reactions	Sequence determined	# Unique sequence
	GPDH V3				
T82	1	0/5	0/5	N	
	10	4/5	0/4	N	-
	50	4/5	0/4	N	-
	1000	5/5	0/5	N	
	>3000	5/5	2/5	Y	1
	Slabs	5/5	3/5	Y	3
T82	PBMC			1	1

HXB2					
ADA					
YU2	R5				
JRCSF		S			
T82S1	X4	. R			
T8252		. R			
	X4	. R			
T82P3	R5		PR.	E	35

Summary of DNA findings in virally suppressed patients

- DNA can be detected in CNS macrophages (and possibly astrocytes) isolated from virally suppressed patients
- Does not indicate:
- Frequency of HIV-1 in CNS cells (size of reservoir)
- Number of patients with a CNS reservoir
- Whether a replication competent provirus is present

Nucleosome organisation

Mode of action of Latency-reversing agents

LRA class, CNS penetration and potency

Name	Туре	CNS penetrance	Potency (ACH2)
Panobinostat	HDACi (Pan)	?	52×
Romidepsin	HDACi (Class I)	-/+	9×
Vorinostat	HDACi (Pan)	+++	7×
Entinostat	HDACi (Class I)	-/+	53×
HMBA	Tat mimetic	++	25×
Disulfiram	Akt signaling	+++	4×
JQ-1	BRDi	++	7×
Chaetocin	HMTi	?	25×
Bryostatin	PKC activator	++	13×

Churchill et al., 2015, J Neurovirol

-

(iii) met instit

Patient Cohort

Patient	Risk factor	Last CD4 count (cells/µl)	Antiretroviral(s)	HIV-1 encephalitis	Isolates available			
CB1	MH	10	ddI (prior AZT)	Severe	CSF, BR, PBMC			
CB3	MH	5	ddI (prior AZT and ddC)	Severe	CSF, SC, PBMC			
MACS1	MH	2	None	Severe	BR, SPLN			
MACS2	MH	52	AZT	Moderate	BR, LN			
MACS3	MH	95	None	Moderate	BR, LN			

≻BR - Brain, SPLN - Spleen, LN - Lymph node, CSF - Cerebral spinal fluid, ≻PBMC - Peripheral blood mononuclear cells, SC - Spinal cord

Previously characterized virus isolates from HIV-1 demented patients (Gorry et al., 2001)

Strategy:

PCR, cloned and sequenced LTR

- Analyzed:
- compartmentalization
- transcriptional activity
- transcriptional factor motif analyses

Do unique regulatory mechanisms exist within the CNS which facilitate 'latent' HIV infection and affect responsiveness to LRA

Designing a system to test LTR activity

CNS-derived LTRs have lower basal activity

	43	18	\$2	56	3	2	\$	3 5	ð	1	8	20	10.8	29	EA.	01	\$0	\$6	PA.	60	\$3	10
	Sp)	LATA		LATA)	GAR		GAT			GAT		OTOP	127	(B)	491)	OTEP	-	NF-all	80	50	(20)	TA
1	0							modula	dory		_	_			_	1	enh	ancer	1	b	asal/co	ne -
		•	+ NF40	• 58			+	CLATA .	. 131	1.0	105			+ TATA	• 100	•		+	+	+	+ 6	EEF
			+ NF48	• 50			•	GATA .	• Els	d	ESS CETT			• TATA	• USF					+		EBP
	+	•	+ NF48	+ 84		1,62	+	GATA 3	EN	1.18	Es		COM:	+ TATA	. CIAT		•		+	+	+	
	+	•	+ NF4B	+ 55		USP	+	DATA .	• Es		EBS .	•	-	+ TATA	+ CAT		•	+	+	+		
21	•	•	+ NF48	• 10		USE		USE IN	Ets	a	BS	•		• TATA				•	•			
25	•	•	+ NF4B	•	•	1.000	•		Di	- 39	CEEP	•	•	+ TATA	•		٠		+	+	•	
	+ AP	•	* N-+B of BF	• 34	•	0.00	•	CEP ANI			E39.	•	-				•	•	•			
	+ 48	•	* NF+B c/EBP	+ 84		1,82	+	COF AP-1	0	:.+	Ets	+	-05	+	+			+	+	+	+	
	+ AP.	•	* NF+B c/CBP		•		•	AP-1 a	• Da	•	E15								•			
	+ 404		* NF+B ofEBF	• 58	•			AP-1 -	• Ebi		Ets			+								
N	•	•	+NF+B	+ 54	•	EN	•	19			Es.	•		+ GEEP	+		•	•	+	+	•	
24	•	•	+ NFeB	• 54	•	E.M.	•		2	•	85 ctBP	•	•	+ GEEP	•	•	•		•		•	
			•	• 11	•	URF	•	CLARA .	D	00		•			• 10	00	•	•		+	•	
2	•	•		• 54	•	UF	•	CLATA .		5. de		•	•	•	ON ANY	al	•		+	+:	•	
N.	•	•		• 54	•	de	•	Carra		1.016		•	•	Char CLATA	04.NP	-	•	•	•	+	•	
UR.	+ EB	•		+ Bt	+	And		GATA .	- Eb	0		•	.+		ON AP I	-04	•	•	+	*	•	
8	+	•	+ 1F+8	•			•	APL	86	. +	Ets cEUP	•	•				•		+			
н	+		+ N=0	+			+	APAT 9	86		Da	•	+	+				+	+	+	+	
1	•	•	+ NF40	•			•	APR .	at .		ENA	•	- 00	+ 000	•	•	•	•	+		•	
н	•	•	• NFeE	•	•		•	APP	-		85	•	05	+ OEB	•	•	•	•	•	•	•	
8	+			*		USF	+	OFERP .	sol.		Es	•			•	05 AP		•	•		del 03	BP
17						1.00		CEIP	ad .		Bs	•				OH AP		+	+	+	+ 01	-
12	+ 000			•	•	0.97	•	GEEP		•	CER C	•	ai	+		05	•		+	•		
10	•	•	: * :	•		LEF	+	AFEP 1	88		Ba		det			CK/F	•	•	+	+	+	

CNS-derived LTRs have mutated Sp motif

Gray et al., Molecular Psychiatry (NPG) 2015

(L the other manual) to the other manual to th

Decreased Sp1 binding to the Sp motif significantly correlated with reduced LTR activity

What contribution does the Sp motif have to overall LTR activity?

The Sp motif plays a significant role in both basal and Tat-mediated LTR activity С A в . . Spm 🗰 R U5 113 Z1 M3B7 00R WT+M3B7 U3 R U5 M3B7+WT 000

Burnet Institute

Gray et al., Molecular Psychiatry (NPG) 2015

Do the unique LTRs found in the CNS respond differently to LRA?

۲

Burnet Instit

CNS-derived LTRs have reduced responsiveness to Tat and JQ1+Tat

No significant difference in response was observed for disulfiram and JQ1

However, for Tat and JQ1+Tat > CNS-derived LTRs had reduced response relative to lymphoidderived LTRs from the same patient and relative to 21 wild-type

.

Summary

- HIV DNA detected in a virally suppressed patient
- CNS-derived HIV had significantly lower responsiveness to select LRA
- These data suggest different treatment outcomes in different compartments/reservoirs
- Implications:
- Positives may allow for select targeting of specific reservoirs
 Negatives need to determine LRA activity in all reservoirs
- LTR sequences isolated from the CNS are distinct
- Mutated Sp motif, lower Sp1 binding, lower transcriptional activity
 Unique regulatory mechanisms exist within the CNS that effect the efficiency of LRA to reactivate latent virus
- These data may have implications when selecting LRA for eradication strategies

urnet Institute

Acknowledgements

Burnet Institute

HIV Neuropathogenesis Lab Melissa Churchill Wan-Jung Cheng Emma Roberts Jacquie Raison Daniel Cowley

Hung On Anne Gibbs

SAHMRI Steve Wesselingh

RMIT University Paul Gorry Damian Purcell Jonathan Jacobson Johns Hopkins Justin McArthur Carlos Pardo-Villamizar

Doherty Institute Sharon Lewin Hao Lu Michael Moso Fiona Wightman Michael Roche

> to find a cure NIH R21 MH100954-02 NIMH NIHU19A1096109

()

Burnet Institute

St Vincents Hospital Sydney Bruce Brew Gilles Guillemin

S MONASH University

