# Transcranial electrical stimulation as tool to interfere with cognitive functions: shifting excitability and shaping oscillations.

#### MA Nitsche

Georg-August-University, Dept. Clinical Neurophysiology, Goettingen, Germany

## Physiological correlates of psychological and behavioural processes



### Induction of cortical excitability and activity alterations in humans



### tDCS: The "classical" protocols









### Mechanisms of action - pharmacological perspective



#### Pharmacological dependence of after-effects of tDCS I







#### Pharmacological dependence of after-effects of tDCS II





#### Conclusion I



### Network effects of tDCS



### tDCS-induced functional connectivity alterations in motor-related networks - fMRI



### tDCS-induced functional connectivity alterations of motor cortical networks - EEG

|                          | Task (before tDCS) | Task (after tDCS)  | Rest (after tDCS)  | Task (after tDCS)  |  |
|--------------------------|--------------------|--------------------|--------------------|--------------------|--|
|                          | Rest (before tDCS) | Rest (before tDCS) | Rest (before tDCS) | Task (before tDCS) |  |
| Theta                    |                    |                    |                    |                    |  |
| Alpha                    |                    |                    |                    |                    |  |
| Beta                     |                    |                    |                    | /////              |  |
| Low-Gamma<br>(30-60 Hz)  |                    |                    |                    |                    |  |
| High-Gamma<br>(60-90 Hz) |                    |                    |                    |                    |  |



### Conclusion I

- tDCS modulates cortical excitability
- tDCS is well suited to model non-focal plasticity in the human brain
- Not only regional, but also network effects

# The rationale for behavioural effects - Learning I









# The rationale for behavioural effects - Learning II

Serial reaction time task (SRTT)



12 stimuli, 10 times repetition per block







# The rationale for behavioural effects – working memory







Fregni et al. Exp Brain Res 2005, Mannie et al. 2010

### Modulation of emotional processes via





### Association between physiology and behaviour - nicotine





Grundey et al. J Neurosci 2012, in preparation

### Conclusion I

- ✓ Application of tDCS to modulate functions is physiology-based
- ✓ physiological alterations are associated with functional effects
- ✓ So far most extensively explored for anodal tDCS
- ✓ So far most extensively explored for motor cortex

Is this a general rule?

### Only anodal tDCS? – task dependency



### Only anodal tDCS? - task dependency









anodal







cathodal

### Everybody the same? - Interindividual differences



#### Everybody the same? – Interindividual differences







### Conclusion II

- ✓ Effect of tDCS on performance depends on task characteristics, e.g. noisy vs not noisy
- ✓ excitability enhancement is not identical with performance improvement
- ✓ interindividual differences might contribute

### Relevance of oscillatory activity for cognitive processes (tACS)





Table 1 Mean MEP amplitudes (SEM) before and after tACS at 1-, 5-, 10-, 15-, and 30-Hz stimulation

|        | 1 Hz            | 10 Hz           | 15 Hz           | 30 Hz           | 45 Hz           | Sham            |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Before | $1.02\pm0.11$   | $1.03 \pm 0.13$ | $1.03 \pm 0.09$ | $1.03 \pm 0.08$ | $1.04 \pm 0.09$ | 1.02 ± 0.11     |
| 0 min  | $1.01 \pm 0.30$ | $0.93 \pm 0.31$ | $1.15 \pm 0.37$ | $1.06 \pm 0.33$ | $1.15 \pm 0.46$ | $1.19 \pm 0.42$ |
| 2 min  | $1.04 \pm 0.44$ | $0.94\pm0.31$   | $1.05\pm0.41$   | $1.11 \pm 0.38$ | $1.11 \pm 0.47$ | $1.20 \pm 0.38$ |
| 4 min  | $1.16 \pm 0.37$ | $0.91 \pm 0.37$ | $1.17 \pm 0.34$ | $1.16 \pm 0.33$ | $1.30 \pm 0.51$ | $1.20 \pm 0.31$ |
| 8 min  | $1.14 \pm 0.35$ | $0.92 \pm 0.43$ | $0.98 \pm 0.27$ | $1.15 \pm 0.29$ | $1.19 \pm 0.45$ | $1.20 \pm 0.36$ |
| 10 min | $1.20 \pm 0.45$ | $0.99 \pm 0.36$ | $1.13 \pm 0.37$ | $1.14 \pm 0.29$ | $1.06 \pm 0.51$ | $1.31 \pm 0.46$ |
| 15 min | $1.32 \pm 0.53$ | $1.08\pm0.40$   | $1.13 \pm 0.27$ | $1.20 \pm 0.20$ | $1.09 \pm 0.41$ | $1.16 \pm 0.41$ |
| 20 min | $1.27 \pm 0.52$ | $0.99 \pm 0.27$ | $1.21 \pm 0.20$ | $1.11 \pm 0.33$ | $1.06 \pm 0.43$ | $1.04 \pm 0.22$ |

A decrease of the MEP amplitude after 10-Hz stimulation was observed, but was not significant.

#### Phosphene thresholds





Antal et al. Brain Stimul 2008, Kanai et al. Curr Biol 2008

### Oscillatory activity in working memory









### Oscillatory activity in dreams



### General Remarks

- ✓ physiological processes and behavioural results are not independent from each other
- ✓ the relationship between physiology and behaviour might be more complicated than originally thought
- ✓ state-dependency, task characteristics, individual differences do contribute
- ✓ Nevertheless non-invasive brain stimulation is an important tool to understand the physiological foundation of cognitive processes

Team Min-Fang Kuo Rafael Polania Anirban Dutta Jessica Grundey Giorgi Batsikadze Shane Fresnoza Jan Grosch Caspar Stephani **Nivethida** 

Thirugnanasambandam E. Pavlova Katia Monte-Silva Elisabeth Stiksrud Linda Kuo Yong-II Shin Yuichiro Shirota Aguida Foerster

Kooperations F. Padberg LMU H. Ehrenreich J. Rothwell A. Pascual-Leone F. Fregni GOETHE U. Voss







#### **Funding**















### Many thanks for your attention!