Adolescent chlamydia cases rates: Impact of screening heterogeneity

Lizzi Torrone
Surveillance and Data Management Branch
Division of STD Prevention
Centers for Disease Control and Prevention
ISSTD
September 22, 2015

National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention
Division of STD Prevention

Rates of Reported Cases of Chlamydia, United States, 2000–2011

- Rates increased 5.5% annually
- Likely a result of
 - ↑ reporting
 - ↑ use of more sensitive tests
 - ↑ screening

↑ case rate = a good thing

Rates of Reported Cases of Chlamydia, United States, 2000–2012

- Rates increased 5.5% annually
- Likely a result of
 - ↑ reporting
 - ↑ use of more sensitive tests
 - ↑ screening

↑ case rate = a good thing

Rates of Reported Cases of Chlamydia Among 15–19 Year Old Females, United States, 2000–2014

- During 2005–2011: Rates: ↑ 4.2% per year
- During 2011–2014: Rates: ↑ 5.5% per year

One interpretation….
- Chlamydia incidence is decreasing among adolescent females.
One interpretation....

- Chlamydia incidence is decreasing among adolescent females.
 - Assume reporting completeness has not decreased
 - Assume NAAT use has not decreased
 - Assume screening has not decreased
 - ??

Has reporting completeness decreased?

- Hopefully not! But maybe.
 - Jurisdictions switching to new information systems

Has reporting completeness decreased?

- Has reporting completeness decreased?
 - Hopefully not! But maybe.
 - Jurisdictions switching to new information systems
 - Is it happening in all geographic areas?

Jurisdictions where chlamydia case rates among females aged 15–19 years decreased during 2011–2014 (n=43)

- Has reporting completeness decreased?
 - Hopefully not! But maybe.
 - Jurisdictions switching to new information systems
 - Is it happening in all geographic areas?
 - 43/51 jurisdictions reported decreases during 2011–2014
 - Is it happening in all age groups?
Has reporting completeness decreased?

- Hopefully not! But maybe.
 - Jurisdictions switching to new information systems
- Is it happening in all geographic areas?
 - 43/51 jurisdictions reported decreases during 2011–2014
- Is it happening in all age groups?
 - No
- Is it happening among all race/ethnicities?
 - Yes, but not at the same slope

One interpretation….

- Chlamydia incidence is decreasing among adolescent females.
 - Assume reporting completeness has not decreased **Probably true**
 - Assume NAAT use has not decreased
 - Assume screening has not decreased
 - ??
Has NAAT use decreased?

- No current data available

One interpretation:

- Chlamydia incidence is decreasing among adolescent females.
 - Assume reporting completeness has not decreased **Probably true**
 - Assume NAAT use has not decreased **Probably true**
 - Assume screening has not decreased
 - ??

Measuring chlamydia screening

What we want to measure (screening coverage)

- # of females tested
- # of sexually-active females

What we actually measure (screening uptake)

- # of females tested
- # of sexually-active females who saw a provider

Number of female enrollees aged 16–20 years tested for chlamydia and proportion tested in commercial plans, HEDIS, 2009–2013 (among continuously contributing plans, n=272)

- 2009: 100,000
- 2010: 110,000
- 2011: 120,000
- 2012: 130,000
- 2013: 140,000

Proportion of female enrollees tested:

- 2009: 50%
- 2010: 52.5%
- 2011: 55%
- 2012: 57.5%
- 2013: 60%

Number of female enrollees aged 16–20 years tested for chlamydia and proportion tested in Medicaid plans, HEDIS, 2009–2013 (among continuously contributing plans, n=101)

- 2009: 50,000
- 2010: 49,000
- 2011: 48,000
- 2012: 47,000
- 2013: 46,000

Proportion of female enrollees tested:

- 2009: 20%
- 2010: 20%
- 2011: 20%
- 2012: 20%
- 2013: 20%
One interpretation...

Chlamydia incidence is decreasing among adolescent girls

- Assume reporting completeness has not decreased: **Probably true**
- Assume NAAT use has not decreased: **Probably true**
- Assume screening has not decreased: ??
- ??

What if prevalence was constant, but screening coverage decreased annually by 5%...

<table>
<thead>
<tr>
<th>Year</th>
<th>Observed Case Rate</th>
<th>Hypothetical Case Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>7,500</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>7,000</td>
<td>7,000</td>
</tr>
<tr>
<td>2013</td>
<td>6,500</td>
<td>6,500</td>
</tr>
<tr>
<td>2014</td>
<td>6,000</td>
<td>6,000</td>
</tr>
</tbody>
</table>

*2014 data are preliminary; Among the 43 jurisdictions reporting in OMB compliant categories

Conclusions

- Still a fair amount of unknowns
 - Limited data on screening coverage
 - Limited data on screening uptake by race
- Denominators matter
- What can we do
 - Look where we have screening estimates
 - Think about a paradigm shift—what should we be measuring

Acknowledgements

- Hillard Weinstock
- Catherine Satterwhite
- Guoyu Tao
- Office of Population Affairs
Thank you!
ETorrone@cdc.gov

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333
Telephone: 1-800-CDC-INF0 (232-4636) / TTY: 1-888-232-6348
E-mail: cdcinfo@cdc.gov Web: http://www.cdc.gov

The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official position of the Centers for Disease Control and Prevention.