Transmission Protection Overview

2016 Hands-On Relay School

Normann Fischer
Schweitzer Engineering Laboratories
Pullman, WA
Transmission Line Protection

Objective

General knowledge and familiarity with transmission protection schemes
Transmission Line Protection

Topics

- Primary/backup protection
- Coordination
- Communication-based schemes
- Breaker failure protection
- Out-of-step relaying
- Synchronism checking
Primary Protection Function

Trip for abnormal system conditions that may

- Endanger human life
- Damage system equipment
- Cause system instability
Protection Zones

- Primary protection
 - first line of defense
- Backup protection
 - operates when primary fails
How Can A Protection System Fail?

- Current or voltage signal supply
- Tripping voltage supply
- Power supply to the relay
- Protective relay
- Tripping circuit
- Circuit breaker
Two Types of Backup

- **Remote backup**
 - Located at different station
 - No common elements

- **Local backup**
 - Located at same station
 - Few common elements
 - Separate relays
 - Independent tripping supply and circuit
 - Different current and voltage inputs
Remote vs Local Backup

- **Speed**
 - Remote is slower

- **Selectivity**
 - Remote disconnects larger part of the system

- **Price**
 - Local requires additional equipment
Primary and Backup Coordination

- Best selectivity with minimum operating time
- Backup achieved through settings
 - Pick up values
 - Time delays
Coordination Types Considered

- Time-Overcurrent
- Time-Stepped Distance
- Communication-Aided Schemes
Time-Overcurrent Relays

- **Definite-Time Overcurrent**
 - Operate in a settable time delay when the current exceeds the pickup value
 - Instantaneous operation – no intentional time delay

- **Inverse-Time Overcurrent**
 - Operating curve chosen as a function of the damage curve of the primary equipment
Time-Overcurrent Coordination

Inverse-Time Overcurrent

- Pickup of relay A set low enough to see the fault shown and backup relay C
- Pickup should be above emergency load conditions (phase relays)
- Time delay of relay A should allow relay C to clear the fault first
Time-Overcurrent Coordination

S - Selectivity time delay (aka CTI):

- Breaker operating time
- Overtravel (impulse) time (E/M relays)
- Safety margin

\[0.2s \leq CTI \leq 0.4s \]
Directionality required for most relays

1-2-3-4-5

a-b-c-d-e

Relays at ‘5’ and ‘e’ can be nondirectional
Instantaneous Overcurrent Protection

- Inverse-Time O/C coordination may result in long time delays

- Instantaneous O/C relays set to trip for faults for ~80% of the line section
 - Significantly reduced tripping times for many faults
Time-Stepped Distance Protection

- Coordination similar to that of inverse-time O/C
- Relay at A set to trip instantaneous for faults in its Zone 1 (reaching ~80% of the line section)
- Relay at A backs up relay at C after Zone 2 timer times out
- Faults at the end of the line also cleared in Zone 2 time
Communication-Based Protection

Rationale

- Distance protection can clear faults instantaneously for 60% to 80% of the line length
- Protection speed may be critical to maintain system stability
- High-speed autoreclosings application
Communication-Based Protection

Communication Mediums

- Power Line Carrier
- Microwave
- Fiber-Optics
- Pilot Channels (Private and Leased)
Communication-Based Protection

Scheme Types

- Permissive Overreaching Transfer Trip (POTT)
- Permissive Underreaching Transfer Trip (PUTT)
- Directional Comparison Blocking (DCB)
- Directional Comparison Unblocking (DCUB)
- Direct Underreaching Transfer Trip (DUTT)
- Direct Transfer Trip (DTT)
Permissive Overreaching TT

Protective Zones

Key XMTR

Zone 2 Elements

RCVR

AND

Trip
Permissive Overreaching TT

- Permissive signal must be detected from the remote end for the communication-aided trip
- Absence of communication channel disables the accelerated tripping
Permissive Overreaching TT
Complications and Concerns

- Desensitization due to infeed
 - Dependability issue – failure to trip high speed

- Current reversal
 - Occurs in parallel lines with sequential tripping
 - Security issue – coupled with long channel reset times may cause trip of the healthy parallel line
Current Reversal

All Sources In

- Z2 at Breaker 1 picks up and sends permissive signal to Breaker 2
- Z2 at Breakers 3 and 4 send permissive signals to each other
- Z1 at Breaker 4 trips instantaneously
Current Reversal
System After Breaker 4 Opens

- Current reverses through the healthy line
- Z2 at Breaker 2 picks up
- If the permissive signal has not reset, Breaker 2 trips on POTT
Current Reversal
Possible Solution

- Timer with instantaneous pickup and time delayed dropout, initiated on reverse Z3
- Delay trip with POTT until the timer drops out
Permissive Underreaching TT

- Similar to POTT but permissive signal sent by underreaching Z1 elements
- At the receiving end, Z2 elements qualify the permissive signal
- No problems with current reversal since Z1 doesn’t overreach
Directional Comparison Blocking

Protective Zones

- Zone 2 elements cover the entire line
- Reverse Zone 3 elements must reach further than the opposite Zone 2 overreach
Directional Comparison Blocking

Basic Logic

- In-section faults will not key transmitter and both ends trip high-speed
- Out-of-section fault will key the transmitter at the nearest end to block the trip at the opposite end
Directional Comparison Blocking

Complications and Concerns

- Coordinating time at fault inception
 - Z3 faster than Z2, but channel delay time reduces the margin
 - Z2 must be slowed down

- External fault clearing
 - Z3 and Z2 race to drop out, if Z3 drops out first Z2 overtrips
 - Z3 operates faster and drops slower
 - Channel reset time helps
 - Slower transmitter key dropout time helps
Directional Comparison Blocking
Complications and Concerns

- External fault clearing failure
 - Local backup provided by time-delayed Z3 or external BF relay clears the near bus
 - Remote backup provided by Z2 clears the line

- Stop preference over start
Directional Comparison Blocking

Complications and Concerns

- Current reversal
- Reach Margin
 - Z3 reaches farther back than remote Z2 by at least 50% of Z2 overreach
Directional Comparison Unblocking

- Essentially the same as POTT
- Requires FSK
- In-section fault may impede communication
- In case of channel loss, a 150 ms window is open when permissive signal is bypassed and Z2 allowed to trip high speed
Direct Underreaching TT

- Underreaching Z1 elements send direct transfer trip
- Noisy channel can cause false trip
- Very secure channel required
Pilotless Accelerated Trip Schemes

- Communication equipment not justifiable in lower voltage transmission applications
- In-section faults may be uniquely determined by system conditions
- Detecting these conditions is all that is needed for high speed tripping
Pilotless Accelerated Trip Schemes

Faulted System with Breakers Closed

After Breaker 2 opens the only current that can flow is the fault current
Tripping conditions:

- Three-phase load was present before the fault
- Three-phase current was lost
- Current above the threshold detected in at least one phase
Breaker Failure Relaying

- Minimize the damage when a breaker fails to clear a fault
- Trips all sources locally within the critical clearing time to maintain system stability
Breaker Failure Relaying
Common Causes of Breaker Failure

- Main breaker poles failed to clear the fault due to inadequate insulating medium
- Open trip coil or trip coil circuit
- Loss of tripping dc
- Mechanical failure of the breaker trip mechanism
Breaker Failure Relaying
Operating Philosophy

- Activated only when a trip signal is issued from protective relay
- If current is above threshold after a pre-set time period, breaker failure condition is declared
Breaker Failure Relaying
Considerations

- Timer settings must take into account the clearing time of the slowest breaker and the reset time of the fault detector.
- The effect of CT subsidence current on the apparent current dropout time.
- Substation bus configuration must be taken into account to trip minimum number of breakers.
- In multi-breaker schemes, possible transfer trip to the remote end.
Out-of-Step Detection and Blocking

Causes of Out-of-Step

- Power swings result from faults, switching, or big changes in load or generation
- Magnitude of the swing depends on the system impedance change during such conditions
- Swings can be stable or unstable
Power Transfer Equation

\[P = P_S = P_R = \frac{V_S V_R}{X} \sin \delta \]

where:
- \(P \) – power transferred from the sending to the receiving end
- \(V_S \) – sending end voltage
- \(V_R \) – receiving end voltage
- \(\delta \) – angle by which \(V_S \) leads \(V_R \)
- \(X \) – total reactance between the sending and receiving end
Electrical Quantities During Swing
Apparent Impedance Trajectories
Electrical Quantities During Swing
Apparent Impedance Trajectories

- Apparent impedance during power swings can enter into the reach of distance relays.
- If the apparent impedance stays longer than the time delay in a given zone, that distance element will trip as for a fault.
- To prevent such tripping, out-of-step blocking schemes are employed.
Out-of-Step Blocking Distance Elements

If the timer expires between the two zones, out-of-step condition is declared and selected distance elements are blocked.
Synchronism Checking

- After clearing a fault, one end of the line will reclose to “test” the line
- If the test is good, the other end can be closed but only if voltages are close enough and there is a small phase angle difference
- If the conditions are not right, the system will undergo a mechanical and electrical shock with a possible unstable swing
Synchronism Checking

Monitored Quantities

- Voltage magnitudes
- Phase angle difference
- Slip frequency
Synchronism Checking

Synchronizer Window

\[\theta = \sin^{-1} \left(\frac{25DV}{59V} \right) \]
Synchronism Checking

Conditions

- Both voltage phasors are above 59V setting
- Phase angle difference is small
- The above conditions are maintained for at least a short time, ensuring that the slip frequency is small enough and measurements are valid
Synchronism Checking Relay

- Phasor difference setting

\[25DV = 59V \cdot \sin \theta \]

- Timer setting

\[25T = \frac{2 \cdot \theta}{360 \cdot \Delta f} \]

- The measured phasor difference should be below the setting for the given time

- Different than a synchronizing relay
Questions?