PRIORITY RESEARCH CENTRE TRANSLATIONAL NEUROSCIENCE AND MENTAL HEALTH

Progression of age-related decline in task-switching performance and white matter microstructure:

A longitudinal study

Frini Karayanidis, Todd Jolly,
Jaime Rennie, Rhoshel Lenroot, Pat Michie,
Mark Parsons, Christopher Levi

Functional Neuroimaging Laboratory
School of Psychology
University of Newcastle

Cognitive changes in healthy ageing vs. dementia

K.R. Daffner / Promoting Successful Cognitive Aging Normal Aging Additional Brain Insult Cognitive Impairment Cognitive Function Threshold for Clinical Dementia Years I

Age-related cognitive decline

- Cognitive decline in "healthy older adults" is well-documented
- Large variability across areas of cognition (e.g., Goh et al 2012 Psychol Aging)
- Greater effects on higher order cognitive control processes (i.e., last-in, first-out)
- More prominent structural decline in frontal networks

The present study

In "cognitively intact older" adults, is decline in cognitive control over time associated with changes in microstructure in frontal/parietal WM tracts or diffuse changes across the entire WM?

Proactive and reactive control processes in task-switching paradigms

Use of contextual cues to flexibly alternate between task-sets

- Proactive control advance goal setting and task-set preparation
- Reactive control task implementation in the presence of interference

Task-switching paradigm

Mixing Cost =

AR= all-repeat: Letter – <u>Letter</u> – <u>Letter</u> – <u>Letter</u>

MR= mixed-repeat

Switch Cost =

: Letter – <u>Letter</u> – <u>Number</u> – <u>Letter</u> – <u>Number</u> - <u>Number</u>

Sw = Switch

Networks involved in switching-related control

Ruge, Jamadar, Zimmerman, Karayanidis, HBM, 2013

A Fronto-Parietal Activity in Switch > Repeat Contrasts in Task-Switching

- Badre & Wagner (2006)
- Brass & von Cramon (2004)
- Braver et al. (2003)
- + Crone et al. (2006)
- × Dove et al. (2000)
- Jamadar et al. (in press)
- Luks et al. (2002)

- × Pessoa et al. (2009)
- Ruge et al. (2005)
- Ruge et al. (in press)
- + Slagter et al. (2006)
- Sohn et al (2000)
- Wager et al. (2004)
- Wylie et al. (2006)

Richter & Yeung, in press

BA6, Medial Frontal Gyrus;

BA40, IPL;

BA40/7, SPL;

BA7, Precuneus;

BA32, Cingulate Cortex;

BA9/6, Middle Frontal Gyrus;

BA19, Precuneus;

BA9, Middle Frontal Gyrus;

BA7/31, Precuneus;

BA46, Middle Frontal Gyrus;

BA31, Precuneus;

BA39, Middle Temporal gyrus;

BA13, Insula;

BA13/47, Insula;

BA18, Middle Occipital Gyrus;

BA19, Inferior Occipital

Gyrus/Fusiform Gyrus

Task-switching and fMRI activation

Jamadar et al. 2010 Neuroimage

A. Informatively - Non-informatively Cued

B. Informatively Cued Switch - Repeat

Ageing effects in task-switching

Older adults

- Larger switch cost early in task exposure
- Slower to develop advance preparation to switch
- Sustained mixing cost even after extensive task practice
- Greater engagement of proactive control for switch and repeat trials
- Greater target-driven interference for switch trials

E.g., Karayanidis et al., Frontiers in Psychology 2011; Kray et al., Psychophysiology 2005 Kray et al., Acta Psychologica 2004; Whitson et al., Acta Psychologica 2012

Present study

Characterise change over 2y in healthy older adults

- in WM organisation change
- overall cognitive performance
- specific aspects of task-switching performance

Are changes in cognition associated with deterioration of specific WM tracts or global WM changes?

Fronto-parietal involvement in ageing-related task switching changes

Madden et al., Neuropsychol Rev 2009; Gold et al., Neurobiology of Aging

- Frontoparietal white matter changes linked to agerelated differences in task-switching
- However, did not examine whether diffuse white matter differences could account for effect

Role of white matter microstructure in age-related cognitive decline

Jolly, Michie, Bateman, Fulham, Cooper, Levi, Parsons, Rennie, Karayanidis.

Participants

- 35 Healthy older adults
- 35 Mild ischaemic attack

Expt tasks with ERPs

- Cued-trials task-switching
- Stop-signal

Neuropsych measures

- WASI, MoCA
- WMS LM
- Digit Span
- CANTAB (IED, SWM, Stockings, SSP, PRM)

Functional Measures

- Functional Assessment
 Questionnaire
- Geriatric Depression Scale
- SF-36
- DASS-42

Imaging

Siemens 3T Verio

- T1 structural (MPRAGE)
- Fluid Attenuated Inversion Recovery (FLAIR)
- Diffusion Weighted Imaging (DWI) sequence
 - Test
 - Re-test @ 20-24mo

Role of white matter microstructure in age-related cognitive decline Jolly, Michie, Bateman, Fulham, Cooper, Levi, Parsons, Rennie, Karayanidis.

Mean (SD)		
66.79 (9.54)		
111.64 (14.60)		
25.97 (3.11)		

Clinical profile	Yes	No
Vascular risk factors present	39 (56%)	31 (44%)
Hypertension	27 (39%)	
Hypercholesterolemia	21 (30%)	
Atrial fibrillation	11 (16%)	
Multiple vascular risk factors	24 (34%)	

Cognitive domains

Working memory

Digit span (WAIS-IV)

Spatial span (CANTAB)

Spatial working (CANTAB)

Episodic memory

Logical memory (WMS-IV)

Pattern Recognition memory

(CANTAB)

Executive Function

Stockings of Cambridge

(CANTAB)

Intra-extra dimensional set

shift (CANTAB)

Processing speed

Choice RT

Letter classification task

Number classification task

White matter tractography

- Siemens 3T Verio with 32 channel head coil, b = 3000, 64 directions
- Probabilistic whole brain tractography using MRTrix software to derive tractogram
- Tractogram was filtered into 18 separate white matter pathways using constraint ROI's derived from a DTI tract atlas from John Hopkins University (JHU).

Role of white matter microstructure in age-related cognitive decline Jolly, Michie, Bateman, Fulham, Cooper, Levi, Parsons, Rennie, Karayanidis.

Fractional Anisotropy

directional diffusion

Mean Diffusivity

magnitude of diffusion, regardless of direction

Radial Diffusivity

Diffusion perpendicular to main fibre orientation

Axial Diffusivity

Diffusion along the main fibre orientation

Hua et al., Neuroimage 2008

Correlations between neuropsychological measures and age / WM

Age	WM RaD
365***	367***
265*	411***
430***	468***
494***	676***
	365*** 265* 430***

^{*}p<.05, **p<.01, ***p<.001

Eliminated when partialling WM Rad

Retained when partialling Age

- Performance in all cognitive domains was associated with both age and all WM measures
- Strongest effects with Radial Diffusivity

Influence of diffuse vs regional white matter on mixing-cost

Strongest effects in

MIXING COST	Total WM	IFOL	ILFL	SLFL
Error (incongruent)	.503***	.520***	.534***	.523***
Error (neutral)	.351**	.350**	.343**	.336**
RT (incongruent)	.290**	.339**	.365**	.341**
RT (neutral)	.415***	.470***	.489***	.466***

^{**}p<.01, ***p<.001

IFOL = Inferior fronto-occipital fasciculus – leftILFL = Inferior longitudinal fasciculus – leftSLFL = Superior longitudinal fasciculus – left

IFO: Inferior frontooccipital fasciculus

direct pathway connecting occipital, posterior temporal, and orbito-frontal areas

ILF: Inferior longitudinal fasciculus

long association fibres running the length of occipital and temporal lobes

SLF: Superior longitudinal fasciculus

long association fibres connecting frontal and parietal lobes

Influence of diffuse vs regional white matter on mixing-cost

MIXING COST	Total WM	IFOL	ILFL	SLFL
Error (incongruent)	.503***	.520***	.534***	.523***
Error (neutral)	.351**	.350**	.343**	.336**
RT (incongruent)	.290**	.339**	.365**	.341**
RT (neutral)	.415***	.470***	.489***	.466***

^{**}p<.01, ***p<.001

IFOL = Inferior fronto-occipital fasciculus - left
ILFL = Inferior longitudinal fasciculus - left
SLFL = Superior longitudinal fasciculus - left

RT mixing cost effects remained significant when controlling for total WM

Role of white matter microstructure in age-related cognitive decline Jolly, Michie, Bateman, Fulham, Cooper, Levi, Parsons, Rennie, Karayanidis.

Conclusions

- Age-related decline in task switching performance is mediated by changes in white matter microstructure
- Stronger associations between RaD in IFO, ILF, SLF pathways and mixing cost
- RaD variability in older samples is consistent with demyelination changes
- These WM changes
 - Mediate relationship between age and task-switching performance
 - Remain significant even when controlling for total WML volume
 - Are associated with variability in intracranial arterial pulsatility, especially in the presence of cardiovascular risk factors (Jolly et al, Frontiers Hum Neurosci 2013)

Is the rate of age-related decline of cognitive control ability related to changes in structural integrity of white matter

Karayanidis, Jolly, Rennie, Michie, Bateman, Fulham, Cooper, Levi, Parsons

Participants

- 20 Healthy older adults
- 8 Mild ischaemic attack

Expt tasks with ERPs

- Cued-trials task-switching
- Stop-signal

Neuropsych measures

- WASI, MoCA
- WMS LM
- Digit Span
- CANTAB (IED, sWM, Stockings, SSP, PRM)

Functional Measures

- Functional Assessment
 Questionnaire
- Geriatric Depression Scale
- SF-36
- DASS-42

Imaging

Siemens 3T Verio

- T1 structural (MPRAGE)
- Fluid Attenuated Inversion Recovery (FLAIR)
- Diffusion Weighted Imaging (DWI) sequence
 - Test
 - Re-test @ 20-24mo

Participants

	Full Sample	Time 1
n	70	28
Female	35	12
Age	65.7 +/- 9.3 y	65.4 +/- 8.9
MoCA	25.97 (3.11)	27.0 +/- 2.5
FA WMTotal	0.398 +/- 0.02	0.399 +/- 0.02
RaD WMTotal	0.451 +/- 0.03	0.448 +/- 0.03

Brain volumes

Whole brain DTI measures

Pathway-specific DTI measures

Changes from Baseline to Retest

0.01		FA	MD	Ax	RaD
ATR	L				
ATR	R				
CCFma			0.007	0.036	0.054
CCFmi					
CST	L				
CST	R				
CgCin	L		0.015	0.015	
CgCin	R			0.048	
CgHi	L				
CgHi	R				
IFO	L		0.001	0.002	0.005
IFO	R		0.001	0.001	0.001
ILF	L		0.005	0.012	0.029
ILF	R		0.002	0.001	0.021
SLF	L		0.011	0.003	
SLF	R		0.015	0.001	
UNC	L		0.024	0.014	
UNC	R				
TOTAL			0.010	0.002	0.036

Wakana et al., Radiology 2005

Radial Diffusivity

General Functioning

Task-switching paradigm

Mixing Cost =

AR= all-repeat: Letter – <u>Letter</u> – <u>Letter</u> – <u>Letter</u>

MR= mixed-repeat

Switch Cost =

: Letter – <u>Letter</u> – <u>Number</u> – <u>Letter</u> – <u>Number</u> - <u>Number</u>

Sw = Switch

Task-switching: Informative Cues (prepared)

1. Greater mixing cost

2. Greater switch cost

3. Greater congruence cost

Accuracy: Informative Cues

RT: Informative Cues

% correct

Correlations between cost and WM RaD measure

Error	Baseline					
Cost				Retest		
RaD	Mixing	Incongr	Switch	Mixing	Incongr	Switch
TotalWM						
IFO-L	.457**			.468**	.444*	
IOF-R	.503**			.435*		
ILF-L	.475**			.435*		
ILF-R	.531**					
SLF-L						
SLF-R						

** p<.01; all remain significant when controlling for total WM FA or age

Correlations between mixing cost and WM RaD measure

Error Cost	Baseline	Retest	Change
	Daseille	netest	Change
RaD	Mixing	Mixing	Mixing
TotalWM			
IFO-L	.457**	.468**	-
IOF-R	.503**	.435*	-
ILF-L	.475**	.435*	-
ILF-R	.531**	-	-
SLF-L			
SLF-R			

** p<.01; all remain significant when controlling for total WM FA or age

Baseline to Re-test

WM RaD with MoCA / Mixing Cost

WM RaD with MoCA / Mixing Cost

Summary

Over 24 months:

- Significant decline in global functioning measures (MoCA), but not in IQ / Memory / WM
- Under prepared task conditions (Informative cues) and with incongruent stimuli, baseline to retest showed
 - Reduced sustained control (mixing cost)
 - Reduced proactive control (switch cost for informative cues)
 - Reduced reactive control (congruence cost for informative cues)
 - All affecting primarily response accuracy.
- Substantial variability in size of change across participants

Summary

Over 24 months:

- Reduced WM organisation in pathways connecting occipitotemporal-frontal and parieto-frontal areas
 - Effects larger for RaD consistent with myelination changes
 - Measure very consistent within individuals across time (baseline to retest)

Summary

At each test time:

 RaD in these long anterior-posterior tract consistently correlated with error mixing cost and less so with MoCA

BUT:

No correlation between change in MixCost/MoCA and change in WM RaD

- Obvious culprit sample size?
- Alternative more sensitive behavioural measures latent parameters to differentiate between drift rate (Madden) and threshold (Ratcliff) changes?

PRIORITY RESEARCH CENTRE TRANSLATIONAL NEUROSCIENCE AND MENTAL HEALTH

Functional Neuroimaging Laboratory School of Psychology University of Newcastle

Acknowledgements

Todd Jolly

Patrick Cooper

Jaime Rennie

Rhoshel Lenroot

Christopher Levi

Mark Parsons

Pat Michie

Correlations between cost and WM FA measure

Error	Baseline					
Cost				Retest		
FA	Mixing	Incongr	Switch	Mixing	Incongr	Switch
TotalW						
M						
IFO-L	513**			497**	496**	
IOF-R	489**					
ILF-L	500**			472**		
ILF-R	575**					
SLF-L						
SLF-R						

Stronger pattern consistent with RaD;

** p<.01; all remain significant when controlling for total WM FA or age

