Alterations in Fluids and Electrolytes During Refeeding Syndrome

Barbara Magnuson, PharmD, BCNSP

Objectives

• Define refeeding syndrome including its signs and symptoms
• Identify fluid and electrolyte disturbances in refeeding syndrome
• Review risk factors for the development of refeeding syndrome
• Describe the infusion nurse’s role in delivering care to a patient with refeeding syndrome

Refeeding Syndrome (RS)

• Occurs when enteral or parenteral nutrition is reinitiated to a starved or severely malnourished person
• May present with neurologic, pulmonary, cardiac, neuromuscular, and/or hematologic complications
• Ranges in severity, but may result in death
• Manifests as multiple metabolic alterations and significant fluid and electrolyte disturbances
 – Phosphorus (PO₄³⁻)
 – Potassium (K⁺)
 – Magnesium (Mg²⁺)
Pathophysiology of Starvation

• **First 24-72 hours:**
 - Liver uses glycogen stores for energy
 - Skeletal muscles release amino acids for gluconeogenesis
 - Glucose required for brain, renal medulla, and red blood cells

• **Greater than 72 hours:**
 - Metabolic pathways shift to free fatty acid oxidation in attempt to spare protein catabolism from skeletal muscle
 - Ketone bodies produced as a result
 - Acetyl-acetic acid
 - Beta-hydroxybutyric acid
 - Acetone

LEAD Leadership, Education, Accountability, Development

Pathophysiology of Starvation

• **Adaptive mechanisms occur after prolonged starvation:**
 - Decreased liver gluconeogenesis
 - Decreased basal metabolic rate
 - Increased use of free fatty acids by the brain
 - Hormonal changes
 - Decreased insulin secretion
 - Increased growth hormone secretion
 - Increased cortisol secretion

LEAD Leadership, Education, Accountability, Development

Prolonged Starvation

• Weight loss
• Decreased overall total cell mass
• Electrolyte abnormalities
 - Decreased serum phosphorus
 - Depleted potassium and magnesium stores
• Increased extracellular water
 - Secondary to decreased oncotic pressures resulting from decreased albumin
• Cardiac Effects
 - Reduced cardiac mass and output
 - Reduced total cardiac volume, end diastolic volume and left ventricular mass with severe malnutrition

Knochel J P. Arch Intern Med 1977;137:203-220
O’Connor L, et al. SEM 1977:297:901-904

LEAD Leadership, Education, Accountability, Development
Refeeding Physiology

- Occurs when enteral or parenteral nutrition is provided after a period of starvation

- Sudden shift back to glucose as a primary fuel
 - Increased demand for phosphorylated intermediates of glycolysis (ATP)
 - Insulin levels increase to force glucose into cells for utilization

Refeeding Physiology

- Effects of increased insulin release
 - Potassium, magnesium and phosphorus rapidly enters the cells
 - Exacerbates already low electrolyte levels
 - Extracellular water compartment expands
 - Sodium and water retention may be due to anti-diuretic effect from the elevated insulin levels
 - Ventricular volume returns to normal while left ventricular mass remains reduced
 - Leads to fluid retention and congestive heart failure

Refeeding Physiology

- Thiamine is an essential co-factor for carbohydrate metabolism
 - Possible deficiency during starvation may be worsened during refeeding
- Thiamine deficiency may lead to
 - Wernicke’s encephalopathy/Korsakoff’s syndrome
 - Short-term memory loss
 - Ocular disturbance
 - Confusion
 - Ataxia
 - Coma
Phosphorus

- Normal serum value: 2.5–4.5 mg/dl
 - Major intracellular anion
 - 80% in skeleton, 20% in soft tissue and muscle
 - Average consumption: 1000–1400 mg/day
 - Absorption: jejunum
 - Elimination: 90% renal, 10% by the GI tract
- Degree of hypophosphatemia may be associated with symptoms
 - Moderate: 1.5–2.2 mg/dl
 - Severe: <1.5 mg/dl

Hypophosphatemia

- Hypophosphatemia and associated abnormalities were described in an observational series of 19 trauma patients
- 8 patients inadvertently were given PN without phosphate supplementation
- Results:
 - Patients who developed hypophosphatemia also found to have decreased levels of ATP and 2,3-DPG
 - Significant correlation between total calories administered and fall in serum phosphorus concentration
 - Significant correlation between the amount of phosphate administered and the increase in serum phosphorus concentration

Hypophosphatemia

Physiologic Manifestations:

- Neurologic
 - Paresthesias, weakness, confusion, disorientation, encephalopathy, seizures, coma, and death
- Respiratory
 - Acute failure due to impaired diaphragm contractility
- Immune function
 - Impaired leukocyte chemotaxis and phagocytosis

Hypophosphatemia

Physiologic Manifestations:

- Cardiac
 - **Contractile alterations** due to atrophy and ATP depletion
 - Hypotension
 - **Decreased stroke volume** & ventricular stroke work
 - Decreased mean arterial pressure
 - Increased pulmonary artery wedge pressure
 - Volume overload
 - From aggressive fluid replacement along with Na and water retention
 - **Arrhythmias**

Potassium

- Normal serum value: 3.5–5.0 mEq/L
 - Major intracellular ion: 98% intracellular
 - Average consumption: 4700 mg/day
 - Absorption: Small intestine
 - Elimination: Renal elimination regulated at the distal tubule
 - Complex regulation:
 - Aldosterone, Alkalosis
 - High potassium diet
 - Increased sodium delivery to the distal tubule

Potassium

- Regulates electrical cellular membrane potential, cellular metabolism, glycogen, and protein synthesis

Hypokalemia

- Degree of hypokalemia associated with symptoms
 - Mild to moderate (2.5–3.5 mEq/L)
 - Nausea & vomiting
 - Constipation
 - Weakness
 - Severe (<2.5 mEq/L)
 - Paralysis
 - Respiratory compromise
 - Rhabdomyolysis & muscle necrosis
 - EKG changes & cardiac arrhythmias

Magnesium

- Normal serum value: 1.8–2.5 mg/dl
- Major intracellular ion: 2nd most abundant intracellular cation
 - 99% in the bone
 - Serum levels do not properly reflect body's total Mg++ stores or intracellular stores
- Absorption: Only 30% of oral Mg++ is absorbed
 - Oral magnesium creates a laxative effect further complicating absorption in the presence of short bowel syndrome or malabsorption diseases
- Elimination: renal

Cofactor for many biochemical reactions and enzymes

Participates in oxidative phosphorylation

![Diagram](http://www.mgwater.com/ft/schroll/schrfig1.gif)

Hypomagnesemia

- Degree of hypomagnesemia may be associated with symptoms
 - Symptoms resemble hypokalemia and hypophosphatemia
- Mild to moderate (<1.5 mg/dl)
 - Weakness, muscle twitching/tremor, altered mental status, anorexia, nausea, vomiting, diarrhea
- Severe (<1.0 mg/dl)
 - EKG changes
 - Cardiac arrhythmias: Vtach/Torsades de Pointes
 - Tetany: intermittent muscle spasms
 - Convulsions/seizures
 - Coma/death

Hypomagnesemia-Induced Torsades de Pointes

Thiamine (Vitamin B₁)

Deficiency

LEAD Leadership, Education, Accountability, Development
Sodium and Fluid Alterations

- Occurs in the early phase of RS
- Sodium retention
- Extracellular expansion results in fluid overload
 - Pulmonary edema/respiratory failure
 - Cardiac decompensation/failure

RS

<table>
<thead>
<tr>
<th>PO4</th>
<th>Mg</th>
<th>Vit B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Fluid</td>
<td></td>
</tr>
</tbody>
</table>

Cardiac dysfunction
- Arrhythmias
- Congestive Heart Failure
- Hypotension
- Death

Respiratory failure
- Decrease in ATP
- Decrease in 2,3 DPG
- Diaphragmatic Depression
- Mechanical Ventilation
- Death

Neurologic deficits
- Lethargy
- Confusion
- Coma
- Death

LEAD
Leadership, Education, Accountability, Development
CPS Observational Study

- Prospective study: 1944–1946
- 36 male civilian public service (CPS) volunteer participants
- Evaluated physiologic effects of 6 months of semi-starvation
- Results:
 - Decreased cardiac reserve
 - Cardiac failure
- Renewed interest → current focus on early aggressive nutrition strategies in the critically ill patient population

World War II

- Significant complications observed when victims of WWII were restored to normal food and liquid intake after prolonged periods of malnutrition/starvation
 - Lenengrad: peripheral edema, hypertension and cardiac insufficiency increased markedly
 - Japan: Peripheral edema
 - Netherlands: Neurological complications, including coma and convulsions

Parenteral Nutrition Fatalities

- 2 chronically malnourished women (both <IBW) started on TPN
 - 40% IBW and 70% IBW
 - Low potassium and phosphorus levels before TPN initiated
 - TPN dosed @ 75kcal/kg dextrose & 3.5g/kg protein
 - Electrolyte disturbances were consistent in both patients
 - Severe hypophosphatemia
 - Severe hypokalemia
 - Severe hypomagnesemia
 - Within 48 hours, both patients required mechanical ventilation
 - Cardiac abnormalities developed and both patients died

References:

Keys et al. MINNESOTA STUDY OF STARVATION, 1950.
Parenteral and Enteral Nutrition Cohort Study

- 148 patients with mild to severe malnutrition that received parenteral or enteral nutrition support for more than 7 days
- Incidence of RS:
 - 48% had symptoms consistent with RS
 - Hypomagnesemia, hypokalemia, hypophosphatemia
 - 55% of RS appeared at day 3 of nutrition support
- Patient Outcomes:
 - RS associated with 10 day longer hospital stay
 - 15 patients with RS died

RS Case Report Review

- Included 27 cases reported by 20 authors
- Ages of cases ranged from 10–90 yrs
 - Many were adolescents with anorexia nervosa
- Most pts received enteral nutrition
 - Six received TPN
- RS symptoms occurred within =first 5 days of feeding

RS Case Report Review

- Results
 - Of the patients with low BMI or poor PO for greater than 48 hours prior to refeeding:
 - 96% experienced hypophosphatemia
 - 51% experienced hypomagnesemia
 - 46% experienced hypokalemia
 - 46% had BOTH hypophosphatemia and hypomagnesemia
 - 42% patients had 3 or more abnormal labs

RS in the Critically Ill

- 62 med/surgical ICU pts refed with TPN or EN after least 48hrs NPO
- Patients were NOT previously malnourished
- Evaluated incidence of refeeding hypophosphatemia
 - Drop in serum phosphorus by at least 0.5 mg/dL to less than 2 mg/dL
- Results:
 - 34% pts exhibited refeeding hypophosphatemia
 - 10% pts developed a phosphorus < 1 mg/dL
 - Phosphorus nadir occurred after @ 2 days of feeding
 - Patients with hypophosphatemia had significantly prolonged lengths of mechanical ventilation and hospital stay
- A low prealbumin was the only risk factor identified that predicted the development of refeeding hypophosphatemia

RS Risk Factors

- Obvious protein & calorie malnutrition
 - Edema
 - Cachexia
- Less than 85% IBW
- Anorexia nervosa
- Chewing or swallowing difficulties
 - Patients after stroke
- Residents admitted from skilled nursing facilities
- History of excessive alcohol intake

RS Risk Factors

Chronic diseases causing under-nutrition
- Cancer
- COPD
- Cardiac cachexia
- Cirrhosis
- Poor PO intake
 - Head /Neck tumor/radiation
 - Esophageal tumors/surgery
 - GI fistulas
 - High output ileostomy drainage
RS Risk Factors

- Morbid obesity with rapid or massive weight loss
- Major surgery with previous prolonged NPO status
- ICU patients unable to be fed for 2–5 days
 - The more hypermetabolic, the sooner RS develops
 - Multiple-trauma patient, traumatic brain injury, burns
 - Maintenance IV fluids contain potassium but not phosphorus
- Children with failure to thrive, prolonged vomiting, and malabsorptive diseases

RS Management

- Prevent refeeding syndrome
 - Identify patients at risk
 - Escalate nutrition slowly
 - Administer 10% dextrose @ 40ml/hr for the first day
 - Continue 10% dextrose if hypoglycemia occurs
 - Assess electrolyte levels and aggressively correct all electrolyte disorders
 - Consult GI or Nutrition Support Service
 - Provide supportive care as needed

Prevention of RS

- Avoid overfeeding
 - The patient did become malnourished overnight and you can NOT correct it overnight!
- “START LOW & GO SLOW”
 - Only 25% of the calories on day one
 - Advance slowly over 3–5 days toward caloric goal
 - If severely malnourished, consider advancing over 5–7 days
- Assess and correct baseline electrolytes BEFORE initiating nutrition support
Prevention of RS

- Initially provide ONLY the minimal needs to prevent overfeeding.
- Carbohydrates
 - Provide minimum requirement
 - Ex: 100–150 gm/day for a 70 kg male
 - Carbohydrate administration will:
 - Suppress gluconeogenesis
 - Spare protein catabolism
 - Supply energy to CNS

Prevention of RS

- Protein
 - Requirements:
 - 1.5 gm/kg/day or 2.0 gm/kg/day if severely underweight
 - Patients with increased protein requirements:
 - Trauma, Head injury, or burns
 - Continuous renal replacement therapy
 - Hepatic dysfunction & Cirrhosis
 - Decubitus ulcers/skin breakdown
 - Patients with decreased protein requirements:
 - Renal Failure with uremia
 - Multivitamin, & Trace elements - supplemented daily
 - Thiamine - Use higher dose initially 50–100 mg/day x 3 days

LEAD
Leadership, Education, Accountability, Development

ASPEN Guidelines

- Identify patients at risk of RS
- Correct electrolyte abnormalities prior to the initiation of nutrition support.
- Initiate nutrition support at 25% of the estimated goal and advanced over 3–5 days to the goal rate.
- Monitor serum electrolytes and vital signs carefully after nutrition support is started

Enteral Phosphorus Replacement

- Mild/asymptomatic (1.5–2.2 mg/dl)
 - Enteral supplementation is reasonable

<table>
<thead>
<tr>
<th>Product</th>
<th>P mmol</th>
<th>Na⁺ mEq</th>
<th>K⁺ mEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/C Neutra-Phos® (capsule/pkt)</td>
<td>8 (250mg)</td>
<td>7.1 (160mg)</td>
<td>7.1 (280mg)</td>
</tr>
<tr>
<td>D/C Neutra-Phos K® (capsule/pkt)</td>
<td>8</td>
<td>0</td>
<td>14.25</td>
</tr>
<tr>
<td>Skim milk per 8 oz (1 cup)</td>
<td>8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>K-Phos® Neutral (tablet)</td>
<td>8</td>
<td>13</td>
<td>1.1</td>
</tr>
<tr>
<td>Fleet® Phospho Soda (soln)/ml</td>
<td>4.15</td>
<td>4.82</td>
<td>0</td>
</tr>
</tbody>
</table>

1 mmol = 93 mg phosphorus (MW = 31)

- Special Considerations:
 - Note the potassium and sodium content when selecting a product
 - Phosphorus powder packets can be given by mouth or feeding tube
 - Can cause osmotic laxative effect in critically ill patient which may worsen hypophosphatemia

- **MEDICATION ERROR ALERT:**
 - PhosLo® (calcium acetate) – is a phosphorus BINDER used to DECREASE phosphorus
 - NOT a phosphorus supplement

Parenteral Phosphorus Replacement

- Severe/symptomatic (<1.5 mg/dl)
 - Parenteral replacement is most effective

<table>
<thead>
<tr>
<th>Product</th>
<th>P mmol</th>
<th>Na⁺ mEq</th>
<th>K⁺ mEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium Phosphate (ml)</td>
<td>3</td>
<td>0</td>
<td>4.4</td>
</tr>
<tr>
<td>Sodium Phosphate (ml)</td>
<td>3</td>
<td>4.0</td>
<td>0</td>
</tr>
</tbody>
</table>

3 mmol = 93 mg phosphorus (MW = 31)
Parenteral Phosphorus Replacement

- **UK HealthCare: Phosphorus Sliding Scale**

<table>
<thead>
<tr>
<th>Phosphorus</th>
<th>IV Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild: 2.7–1.9 mg/dl</td>
<td>9 mmol over 2 hours *</td>
</tr>
<tr>
<td>Moderate: 1.8–1 mg/dl</td>
<td>18 mmol over 3 hours *</td>
</tr>
<tr>
<td>Severe: <1 mg/dl</td>
<td>27 mmol over 4 hours *</td>
</tr>
</tbody>
</table>

 * Time of administration is for ICU only

- Slower infusion time required for non-ICU patient monitoring areas
- Central IV access preferred

Parenteral Phosphorus Replacement

- Weight-based replacement has been evaluated:

<table>
<thead>
<tr>
<th>Phosphorus</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild: 2.5–3 mg/dl</td>
<td>0.32 mmol/kg *</td>
</tr>
<tr>
<td>Moderate: 1.6–2.2 mg/dl</td>
<td>0.64 mmol/kg *</td>
</tr>
<tr>
<td>Severe: 1.5 mg/dl</td>
<td>1 mmol/kg *</td>
</tr>
</tbody>
</table>

 * Actual BW if ≤130% of IBW, Adjusted body wt if >130% IBW

 \[
 \text{Adj BW} = \frac{\text{IBW} + 0.25(\text{actual body weight} - \text{IBW})}{1.30}
 \]

- Results:
 - Improved serum phosphorus levels by day 2
 - Mean serum phosphorus concentrations were within normal limits in all groups by day 3

Parenteral Phosphorus Replacement

- Special Considerations:
 - Note the potassium and sodium content when selecting a product
 - Rates of administration depends on ability to monitor patient and must account for potassium concentrations
 - Check IV compatibilities prior to administration
 - May combine enteral and parenteral supplements to rapidly increase phosphorus levels
 - Caution for infusing with calcium products or same IV line
 - Both IV potassium and sodium phosphate have been on manufacturer shortage since 2012

LEAD
Phosphorus Monitoring

- Recheck phosphorus 2–4 hours after dose
- Continue to supplement
 - Until asymptomatic
 - Phosphorus is within normal limits
- Check phosphorus daily for first week of nutrition support if patient is at risk for refeeding syndrome

LEAD
Leadership, Education, Accountability, Development

Treatment: Hypokalemia

- Mild/asymptomatic (2.5–3.5 mEq/L)
 - Enteral supplementation preferred
 - Safe and well absorbed
 - Very GI/stomach irritating
 - May cause severe cramping
 - Take with food and 4–6 ounces of water or juice
 - Can cause osmotic laxative effect in critically ill patient which may worsen hypophosphatemia
- Severe/symptomatic (<2.5 mEq/L)
 - Parenteral replacement is preferred

LEAD
Leadership, Education, Accountability, Development

<table>
<thead>
<tr>
<th>Potassium</th>
<th>Replacement (PO or IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild: 4.0–3.7 mEq/L</td>
<td>40 mEq</td>
</tr>
<tr>
<td>Moderate: 3.6–3.4 mEq/L</td>
<td>60 mEq *</td>
</tr>
<tr>
<td>Severe: <3.3 mEq/L</td>
<td>80 mEq *</td>
</tr>
</tbody>
</table>

* If given as PO doses, give in 3 divided doses

- For severe hypokalemia, give both IV and PO
- Central IV access preferred
- Special considerations required for renal dysfunction:
 - Typically give 50% of recommended replacement
 - CRRT: May need higher than normal replacement and more frequent monitoring

LEAD
Leadership, Education, Accountability, Development
Treatment: Hypokalemia

- IV Infusion rate:
 - Peripheral line: 10 mEq/hr
 - Central line: 10-40 mEq/hr
- IV Maximum Concentration
 - Peripheral line: 40 mEq/L–80 mEq/L
 - Central line: 80 mEq/L–120 mEq/L
 - 40 mEq/L at UK HealthCare
 - 80 mEq/L at UK HealthCare
 - TPN: 80mEq/L at UK HealthCare

MEDICATION ERROR ALERT: In adult patients, Do not give potassium as IV push

Potassium Monitoring

- Careful monitoring required, especially during IV replacement
 - IV site monitoring for possible extravasation
 - ECG may be required especially if potassium is less than 2.5 mEq/L
- Recheck potassium every 1–4 hrs after dose, continue to supplement until asymptomatic or potassium is within normal limits
- Check potassium daily for first week of nutrition support if patient is at risk for RS

Treatment: Hypomagnesemia

- Parenteral route **preferred**
 - Magnesium sulfate salt
- Enteral magnesium oxide is available
 - Slow onset and poor absorption
 - Laxative effect that may exacerbate hypomagnesemia
- Renal elimination is FAST
 - ~50% of magnesium dose is excreted
- Rapid administration rates may simply increase urinary excretion of magnesium
Treatment: Hypomagnesemia

- Dilute 1 gram of Mg sulfate in at least 10 ml NS or D5W
- Non-emergent hypomagnesemia:
 - Administer 6 grams of magnesium sulfate over 6–12 hours
 - Administer higher doses of magnesium over 12–24 hours
 - Maximum administration rate: 1 gram over 1 hour
 - Total repletion may take several days
- Severe symptomatic hypomagnesemia:
 - Aggressive dosing may be required in the acute care setting
 - 1 gram over 30 min, preferred
 - Maximum: 10 minutes (non-ICU); 7 minutes (ICU)

 Iannello S, Belfiore F. Panminerva Med. 2001 Sep;43(3):177-209

Magnesium Monitoring

- Recheck magnesium every 12–24 hours after dose
- Magnesium has a slow equilibration time between serum, intracellular space, and tissues
- Check magnesium daily for first week of nutrition support if patient is at risk for RS

 Rio A. et al BMJ Open. 2013 Jan 11;3(1)

Special Considerations of RS in Children
Prevention of RS in Children

Prior to initiation of/during nutrition support:
- Evaluate hydration and nutritional state
- Obtain serum electrolytes, prealbumin and albumin levels, and weight
- Monitor pulse, ECG with or without echocardiogram
- Note that early weight gain may be secondary to fluid retention (1)
- Severely malnourished patients with celiac disease are at risk of developing potentially life-threatening refeeding syndrome (2)

Prevention of RS in Children

- Oral feeding regimen: Provide 75% of total daily needs initially
 - 0-7 years old: 80–100 kcal/kg/day
 - 7–10 years: 75 kcal/kg/day
 - 11–14 years: 60 kcal/kg/day
 - 15–18 years: 50 kcal/kg/day
- If the initial food challenge is tolerated, this may be increased over 3–5 days
- Each requirement should be tailored to an individual’s need and the above values may need to be adjusted by as much as 30%

Prevention of RS in Children

- Frequent small feeds
- Minimum of 1 kcal/ml to minimize volume overload
- If milk-based feed induces diarrhea, use hydrolysates
- Initial regimen for malnourished children
 - 0.6–1 g/kg/day (in a formula rich in essential amino acids)
 - Gradually increase to 1.2–1.5 g/kg/day

Prevention of RS in Children

Supplements:
- Replace sodium, potassium, and magnesium PRN
- Replace phosphorus:
 - IV: 1 mmol/kg/day
 - PO: 100 mmol/day for children over 5, oral supplements up to 7 years of age
 - Hypocalcaemia may occur during phosphate supplementation
- Vitamins: thiamine, folic acid, riboflavin, ascorbic acid, pyridoxine, fat-soluble vitamins A, D, E and K
- Trace elements: combination including selenium

Potassium Infusion Guidelines: UK Children's Hospital

- Medication Safety Policy: IV bolus of KCl are NOT permitted for general use except:
 - Pediatric ICU: (0.25mEq/kg–0.5mEq/kg)
 - 10 mEq/hour, not to exceed 1 mEq/kg/hr
 - Neonatal ICU: (0.25mEq/kg–0.5mEq/kg)
 - Ped Heme/Onc svc: (0.25mEq/kg) by senior resident or attending physicians ONLY
- Replace low K+ levels:
 - Increasing K+ in MIVF for a limited number of hours
 - Providing oral K+ replacement

Conclusion

- RS is not only a historical phenomenon
- RS is frequently encountered in modern clinical practice and is relatively poorly recognized or understood
- RS is associated with significant morbidity and mortality
- Pathophysiology includes disturbances of glucose, fluid balance, and electrolytes
- Phosphate, potassium, and magnesium drastically decrease during the refeeding phase and should be aggressively monitored and replaced
- Nutrition support therapies, both enteral and parenteral, should be introduced methodically and slowly over several days to minimize complications
The key to treating refeeding syndrome is preventing it!

Alterations in Fluids and Electrolytes During Refeeding Syndrome

Barbara Magnuson, PharmD, BCNSP