Implicit Shape-Color Associations in Synesthesia

David Brang
Northwestern University
david.brang@northwestern.edu
Stimulation of one sense causes activation in a second modality

Can theoretically bind any two senses

- Grapheme-Color Synesthesia
- Sound-Color Synesthesia
- Time-Space Synesthesia
Phenomenology

- Involuntary, automatic, laden with affect
- Approximately 4% of the population
- Thought to be genetic

Brang and Ramachandran (2011) *PLoS Biology*
Cross-Activation Theory

Ramachandran & Hubbard (2001)

Increased anatomical connections link neighboring regions in synesthetes
Cross-Activation Theory

FMRI and PET studies show co-activation of grapheme and color regions.

Cross-Activation Theory

Diffusion tensor imaging (DTI) studies show increased connectivity in the fusiform gyrus.

Ramachandran & Hubbard (2001)

Rouw & Scholte (2007)
Grapheme-Color Synesthesia

- Consistent
- Idiosyncratic
- What rules (if any) dictate these associations?
- Do pre-linguistic children experience synesthesia?

Brang and Ramachandran (2011) *PLoS Biology*
Role of Experience in Synesthesia

- Semantic and linguistic commonalities (Simner et al., 2005)
- Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
- Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)
Role of Experience in Synesthesia

- Semantic and linguistic commonalities (Simner et al., 2005)
- Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
- Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)
Role of Experience in Synesthesia

- Semantic and linguistic commonalities (Simner et al., 2005)
- Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
- Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)
Role of Experience in Synesthesia

- Semantic and linguistic commonalities (Simner et al., 2005)
- Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
- Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)
Role of Experience in Synesthesia

- Semantic and linguistic commonalities (Simner et al., 2005)
- Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
- Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)
Role of Experience in Synesthesia

- Semantic and linguistic commonalities (Simner et al., 2005)
- Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
- Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)
Role of Experience in Synesthesia

• Semantic and linguistic commonalities (Simner et al., 2005)
• Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
• Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)
Role of Grapheme Shape in Synesthesia

- Similarly shaped letters evoke similar colors in synesthesia.
- 52 grapheme-color synesthetes.
- Within-subject comparison of color similarity and letter similarity.
- Shape-color bias is independent of experience-based determinants (Watson et al., 2012).

Brang et al., (2011) Neuropsychologia
• What do synesthetes experience before they can read?
• Do adult synesthetes experience latent shape-color associations?
Early Activation of V4 in Synesthesia

Activation of color areas in synesthesia early in the grapheme-processing hierarchy as seen with MEG

Ramachandran & Hubbard (2001)

Brang et al., (2010)
• Most synesthetes do not experience conscious shape-color associations
• Synesthetic colors will emerge over time
• Novel grapheme-color associations based on shape-similarity (Jürgens & Nikolić, 2012)
Training Novel Synesthetic Associations

• Enforce grapheme-color associations for shapes that do not elicit conscious colors

• Any implicit shape-color associations present in a synesthete should interfere with learning novel pairings

Brang et al., (2013) Frontiers in Human Neuroscience
Training Novel Synesthetic Associations

- 15 grapheme-color synesthetes and 15 controls
- 6 shapes chosen from 12 possible
- No familiarity with symbols or synesthetic colors

Brang et al., (2013) *Frontiers in Human Neuroscience*
Training Novel Synesthetic Associations

Performance throughout Training

Brang et al., (2013) Frontiers in Human Neuroscience
Training Novel Synesthetic Associations

Performance throughout Training

Accuracy after Achieving Criterion

Brang et al., (2013) *Frontiers in Human Neuroscience*
Discussion

• Experiential factors influence synesthetic associations
 – Color names
 – More common letters are brighter colors
• The shape of the letter biases its color
 – Similarly shaped letters are similar colors
 – Synesthetes take longer to learn novel grapheme-color associations and make more residual errors
• Shape-color associations may predate grapheme-color associations during development through the linking of form and color regions in the temporal lobe
Acknowledgements

Northwestern
Satoru Suzuki, Marcia Grabowecky

UC San Diego
VS Ramachandran, Seana Coulson, Michael Ghiam

U Amsterdam
Romke Rouw

NINDS 2T32NS047987, R01 EY021184

Thank you. Questions?
david.brang@northwestern.edu
Timing of Activity in Synesthetes

Brang, Hubbard, Coulson, Huang, Ramachandran (2010) *NeuroImage*
Cross-Activation Theory

FMRI and PET studies show co-activation of grapheme and color regions

Hubbard et al. (2005)

Rouw & Scholte (2007)

Increased connectivity in the fusiform gyrus
Grapheme ROI

Brang, Hubbard, Coulson, Huang, Ramachandran (2010) *NeuroImage*
V4 ROI

Grapheme task

Brang, Hubbard, Coulson, Huang, Ramachandran (2010) *NeuroImage*
Training Novel Synesthetic Associations

Brang et al., (2013) *Frontiers in Human Neuroscience*
Predicting Latent Associations: EA

← ㅂ → u ← ㅃ → u	4 errors
← ㅗ → m ← apia → m	4 errors
← ㅏ → n ← apia → n	4 errors
← ㅐ → 5 ← apia → 5	8 errors
← ㅔ → g ← apia → g	9 errors
← ㅚ → w ← apia → w	5 errors

Brang et al., (2013) *Frontiers in Human Neuroscience*

\[r = .96 \]
Predicting Latent Associations: KE

Brang et al., (2013) *Frontiers in Human Neuroscience*

![Diagram showing correlations and error counts between characters and their respective mappings]

\[r = .34 \]
Predicting Latent Associations: KL

<table>
<thead>
<tr>
<th>Symbol 1</th>
<th>Symbol 2</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ㅏ ㅏ ㅏ ㅏ ㅏ</td>
<td>ㅗ ㅗ ㅗ ㅗ ㅗ</td>
<td>14 errors</td>
</tr>
<tr>
<td>ㅏ ㅏ ㅏ ㅏ ㅏ</td>
<td>ㅗ ㅗ ㅗ ㅗ ㅗ</td>
<td>15 errors</td>
</tr>
<tr>
<td>ㅏ ㅏ ㅏ ㅏ ㅏ</td>
<td>ㅗ ㅗ ㅗ ㅗ ㅗ</td>
<td>7 errors</td>
</tr>
<tr>
<td>ㅏ ㅏ ㅏ ㅏ ㅏ</td>
<td>ㅗ ㅗ ㅗ ㅗ ㅗ</td>
<td>10 errors</td>
</tr>
<tr>
<td>ㅏ ㅏ ㅏ ㅏ ㅏ</td>
<td>ㅗ ㅗ ㅗ ㅗ ㅗ</td>
<td>5 errors</td>
</tr>
<tr>
<td>ㅏ ㅏ ㅏ ㅏ ㅏ</td>
<td>ㅗ ㅗ ㅗ ㅗ ㅗ</td>
<td>10 errors</td>
</tr>
</tbody>
</table>

$r = .43$

Brang et al., (2013) *Frontiers in Human Neuroscience*
Study 4 Summary

- Similar shapes elicit similar colors in synesthesia, particularly in projectors
- Other factors important for the generation of a particular grapheme-color association
- Training novel symbol-color associations supports the notion that synesthesia is active during the form processing stage of perception
- Important to understanding how synesthesia arises through development
• Novel grapheme-color associations also follow shape similarity conventions
• Notion of shape similarity is critical since may give a developmental account of synesthetic associations
 – Before a synesthete knows what an A or a B is, do they have any synesthetic associations?
 – One possibility is that pre-linguistic synesthetes experience shape-color associations
 – Wagner and Dobkins have shown X month old infants but not Y month old infants show reliable shape-color associations
 – And as we know that synesthetic concurrents change with experience, it is plausible that shape-color associations are refined into letter-color associations
• We wanted to show causal influence of shape-similarity on learning new color associations with complex shapes that did not evoke conscious synesthetic concurrents
• Training study
• Then put in framework of cross-activation theory and Cascaded Cross-tuning Model

Brang et al., XX (XXXX)