Implicit Shape-Color Associations in Synesthesia

David Brang
Northwestern University
david.brang@northwestern.edu

Synesthesia

- Stimulation of one sense causes activation in a second modality
- Can theoretically bind any two senses

Grapheme-Color Synesthesia

Sound-Color Synesthesia

Time-Space Synesthesia

Phenomenology

- Involuntary, automatic, laden with affect
- Approximately 4% of the population
- Thought to be genetic

Brang and Ramachandran (2011) PLoS Biology

Ramachandran & Hubbard (2001)

Increased anatomical connections link neighboring regions in synesthetes

Ramachandran & Hubbard (2001)

Hubbard et al. (2005)

FMRI and PET studies show co-activation of grapheme and color regions

Rouw & Scholte (2007)

Diffusion tensor imaging (DTI) studies show increased connectivity in the fusiform gyrus

Grapheme-Color Synesthesia

- Consistent
- Idiosyncratic
- What rules (if any)
 dictate these
 associations?
- Do pre-linguistic children experience synesthesia?

Brang and Ramachandran (2011) PLoS Biology

- Semantic and linguistic commonalities (Simner et al., 2005)
- Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
- Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)

- Semantic and linguistic commonalities (Simner et al., 2005)
- Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
- Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)

A B C D EFGH JKL MNOP QRST UVWX

- Semantic and linguistic commonalities (Simner et al., 2005)
- Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
- Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)

- Semantic and linguistic commonalities (Simner et al., 2005)
- Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
- Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)

- Semantic and linguistic commonalities (Simner et al., 2005)
- Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
- Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)

- Semantic and linguistic commonalities (Simner et al., 2005)
- Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
- Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)

- Semantic and linguistic commonalities (Simner et al., 2005)
- Higher frequency letters and numbers pair with brighter colors (Beeli et al., 2007; Smilek et al., 2007)
- Small role of memory imprinting from childhood (Witthoft & Winawer, 2013)

Role of Grapheme Shape in Synesthesia

- Similarly shaped letters evoke similar colors in synesthesia
- 52 grapheme-color synesthetes
- Within-subject comparison of color similarity and letter similarity
- Shape-color bias is independent of experience-based determinants (Watson et al., 2012)

```
3 R R
```

Role of Grapheme Shape in Synesthesia

- What do synesthetes experience before they can read?
- Do adult synesthetes experience latent shape-color associations?

Early Activation of V4 in Synesthesia

Ramachandran & Hubbard (2001)

Brang et al., (2010)

Activation of color areas in synesthesia early in the grapheme-processing hierarchy as seen with MEG

Role of Grapheme Shape in Synesthesia

- Most synesthetes do not experience conscious shape-color associations
- Synesthetic colors will emerge over time
- Novel grapheme-color associations based on shape-similarity (Jürgens & Nikolić, 2012)

 Enforce grapheme-color associations for shapes that do not elicit conscious colors

 Any implicit shape-color associations present in a synesthete should interfere with learning novel pairings

- 15 grapheme-color synesthetes and 15 controls
- 6 shapes chosen from 12 possible
- No familiarity with symbols or synesthetic colors

Performance throughout Training

Discussion

- Experiential factors influence synesthetic associations
 - -Color names
 - -More common letters are brighter colors
- The shape of the letter biases its color
 - -Similarly shaped letters are similar colors
 - -Synesthetes take longer to learn novel grapheme-color associations and make more residual errors
- Shape-color associations may predate grapheme-color associations during development through the linking of form and color regions in the temporal lobe

Acknowledgements

Northwestern

Satoru Suzuki, Marcia Grabowecky

UC San Diego

VS Ramachandran, Seana Coulson, Michael Ghiam

U Amsterdam Romke Rouw

NINDS 2T32NS047987, R01 EY021184

Thank you. Questions? david.brang@northwestern.edu

Timing of Activity in Synesthetes

Brang, Hubbard, Coulson, Huang, Ramachandran (2010) Neurolmage

Hubbard et al. (2005)

FMRI and PET studies show co-activation of grapheme and color regions

Rouw & Scholte (2007)

Increased connectivity in the fusiform gyrus

Grapheme ROI

Brang, Hubbard, Coulson, Huang, Ramachandran (2010) Neurolmage

V4 ROI

Brang, Hubbard, Coulson, Huang, Ramachandran (2010) Neurolmage

Performance throughout Training

Learning Curve and Criterion Threshold

Predicting Latent Associations: EA

Brang et al., (2013) Frontiers in Human Neuroscience

r = .96

Predicting Latent Associations: KE

Brang et al., (2013) Frontiers in Human Neuroscience

r = .34

Predicting Latent Associations: KL

Brang et al., (2013) Frontiers in Human Neuroscience

*r = .43

Study 4 Summary

- Similar shapes elicit similar colors in synesthesia, particularly in projectors
- Other factors important for the generation of a particular grapheme-color association
- Training novel symbol-color associations supports the notion that synesthesia is active during the form processing stage of perception
- Important to understanding how synesthesia arises through development

Title Text

- Novel grapheme-color associations also follow shape similarity conventions
- Notion of shape similarity is critical since may give a developmental account of synesthetic associations
 - -Before a synesthete knows what an A or a B is, do they have any synesthetic associations?
 - -One possilibity is that pre-linguistic synesthetes experience shape-color associations
 - Wagner and Dobkins have shown X month old infants but not Y month old infants show reliable shape-color associations
 - –And as we know that synesthetic concurrents change with experience, it is plausable that shape-color associations are refined into letter-color associations
- We wanted to show causal influence of shape-similarity on learning new color associations with complex shapes that did not evoke conscious synesthetic concurrents
- Training study
- Then put in framework of cross-activiation theory and Cascaded Cross-tuning Model