Clinical decision support in practice – HL7 standards, interoperability, and selected applications

Klaus-Peter Adlassniga,b, Mario Cypkoc, Karsten Fehreb, Christoph Mitschd, Michael Nebele, and Stefan Sabutschf

a Section for Artificial Intelligence and Decision Support, Medical University of Vienna (MUV)
b Medexter Healthcare GmbH, Vienna
c University of Leipzig Medical School
d Department of Ophthalmology and Optometry, MUV
e T-Systems, Vienna
f ELGA GmbH and President of HL7 Austria

eHealth/HIMSS Summit, Vienna/Austria, 25 May 2016
Contents

- Welcome (Adlassnig)
- HL7 Austria and HL7 International (Sabutsch)
- Clinical decision support (CDS) – a clinician’s view (Mitsch)
- CDS in diagnostics, therapy, prognosis, and patient management (Adlassnig)
- Big data vs. knowledge design (Adlassnig)
- Overview and introduction into Arden Syntax (Fehre)
- ArdenSuite + knowledge = knowledge engine (Adlassnig)
- Clinical applications I (Cypko)
- Clinical applications II (Nebel)
- Acceptance and barriers (Adlassnig)
Digitalization of clinical medicine

- Stage I: Digitizing patient medical data
 - EHRs, EMRs, Health Apps, ...

- Stage II: Digitizing clinical workflows
 - In-patient, out-patient, home

- Stage III: Digitizing medical knowledge
 - Big data vs. knowledge design

Clinical decision support—Applying knowledge to data

- Patient safety
- Quality assurance
- Cost reduction

Based on our estimate, medical error is the 3rd most common cause of death in the US.

All causes: 2,597k

- Cancer: 585k
- Medical error: 251k
- COPD: 149k
- Suicide: 41k
- Firearms: 34k
- Heart disease: 611k
- Motor vehicles: 34k

However, we’re not even counting this - medical error is not recorded on US death certificates.

Data source: http://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64_02.pdf

© 2016 BMJ Publishing group Ltd.
Model for reducing patient harm

Individual responsibilities

- Knowledge of remedies
- Skill to intercept harm

- Clinical skill
- Sound judgment

- Error awareness
- Calling for help

System responsibilities

1. Make errors more visible
 - Institute safety triggers to alert staff
 - Facilitate a culture of speaking up

2. Respond to error (rescue)
 - Make remedies available
 - Support clinician needs

3. Make errors less frequent
 - Foster culture of safety
 - Engineer hard stops for prevention

From: BMJ 2016;353:i2139
Clinical decision support with knowledge engines

DIAGNOSIS
- alerts, reminders, to-do lists
- clinical test interpretations and temporal abstraction
- (tele)monitoring of chronic conditions
- differential diagnostics
 - rare diseases, rare syndromes
 - further diagnostic procedures
 - multi-morbidity
- genetics, proteomics
 - molecular variations

PROGNOSIS
- illness severity scores, prediction rules
- trend detection and visualization

THERAPY
- drug alerts, reminders, calculations
 - indication, contraindications, redundant medications, cost-effective substitutions
 - dosage calculations, drug-drug and gene-drug interactions
 - adverse drug events
- management of antimicrobial therapies
 - susceptibility and resistance rates
- pharmacogenomics

HOSPITAL MANAGEMENT
- computerized evidence-based workflows, clinical guidelines, protocols, SOPs
- surveillance criteria and quality benchmarking

Knowledge engines
Big data vs. knowledge design

- big raw data
 - data mining
 - CDS
 - induction
 - empirical
 - structured knowledge design
 - knowledge-based systems

- big document data
 - text mining
 - CDS
 - induction
 - mixed

- structured knowledge design
 - CDS
 - deduction
 - axiomatic
IBM Watson Health vs. Medexter Health knowledge

- **raw data**
 - machine learning
 - document data

cognitive engine
- implicit
 - based on associations
 - empirical cases
 - partially transparent

knowledge engine
- explicit
 - based on relationships
 - common, rare, and “impossible” events
 - transparent

- designed knowledge
 - causal knowledge
 - machine learning results

- structured knowledge
- processing engine
How it works

Use it
- as part of your EMR
- or
- as stand-alone application

Medical Knowledge
- medical logic modules

Processing Engine

The knowledge engine
- In the future, any clinical activity will be either supported with or substituted by clinical knowledge engines.

The knowledge
- clinically proven knowledge: rules, tables, decision trees, guidelines, scores, algorithms, ...
- application-ready, evidence-based knowledge packages
- customized knowledge design or knowledge through machine learning

The engine
- HL7’s Arden Syntax clinical knowledge representation and processing, with fuzzy methodologies
- scalable from cloud-based servers to smartphone apps
Use Case: Hypoglycemia

DATA:
LET glucose BE READ {…glucose…};
LET physician_DECT BE DESTINATION {sms:26789};

LOGIC:
IF LATEST glucose IS LESS THAN 50 THEN
 CONCLUDE true;
ENDIF;

ACTION:
WRITE „Warning…“ AT physician_DECT;

CONCLUDE TRUE
→ Do something
Hypoglycemia alert via DECT cordless telecommunications

Event monitors are

“tireless observers, constantly monitoring clinical events”

George Hripcsak

by Stefan Kraus
One of the rules to interpret clinically relevant findings (rule premises form equivalent classes)

RULE 103:

IF one of the following 100 combinations

<table>
<thead>
<tr>
<th>HBsAg</th>
<th>anti-HBs</th>
<th>anti-HBc</th>
<th>IgM anti-HBc</th>
<th>HBeAg</th>
<th>anti-HBe</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>- ±</td>
<td>- ±</td>
<td>+</td>
<td>- ±</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ - ±</td>
<td>+</td>
<td>+ - ±</td>
</tr>
</tbody>
</table>

THEN

The simultaneous occurrence of HBe-antigen and anti-HBs antibodies is a rare event in the natural course of a hepatitis B virus infection. This constellation of findings may be attributed to one of the following causes: (a) circulating HBsAg-anti-HBs immune complexes, (b) hepatitis B virus infection coinciding with a hepatitis B vaccination or injection of HB-hyperimmune globulin, or (c) reinfection with a hepatitis virus B with a different HBsAg subtype. Blood and secretions (saliva, sperm, breast milk) of such patients are to be regarded as infectious.
Automated interpretation of hepatitis serology test results

• includes frequent, rare, as well as inconsistent combinations
• complete coverage of the problem domains
• e.g., hepatitis B serology: about 150 rules in 3 layers for 61,440 possible combinations
HEMATOLOGICAL PROFILE

<table>
<thead>
<tr>
<th>Date</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-18-2015</td>
<td>19.4 /nl</td>
<td>20.1 /nl</td>
<td>17.5 /nl</td>
<td>17.1 /nl</td>
</tr>
</tbody>
</table>

BIOCHEMICAL PROFILE

<table>
<thead>
<tr>
<th>Date</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-18-2015</td>
<td>169 mg/l</td>
<td>105 mg/l</td>
</tr>
</tbody>
</table>

Inflammation markers

<table>
<thead>
<tr>
<th>Date</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-18-2015</td>
<td>169 mg/l</td>
<td>105 mg/l</td>
<td>98 mg/l</td>
<td>80 mg/l</td>
</tr>
</tbody>
</table>

Clinical Alerts

- **04-18-2015 13:02**: Further increase of CRP
 - Persistent leukocytosis (19.4 /nl, 04-18-2015 13:02) compared to previous findings

- **04-17-2015 12:32**: Further increase of leukocytes

- **08-15-2015 13:37**: Leukocyte value indicates leukocytosis

- **04-15-2015 13:37**: Moderately increased CRP
To summarize

- Arden Syntax software: versatile, scalable, data- and knowledge-processing software for CDS and quality measures; Fuzzy Arden Syntax for linguistic and propositional uncertainty
- High integratability through web services and database connectors
- Cockpit monitoring of and dashboard analytics for adverse events
- Reporting and quality benchmarking of adverse events
- **Users**: patient-care institutions; healthcare, research, and teaching institutions; health IT companies; and consumers
Challenges to clinical decision support

• mental
 – necessity or imperative not recognized (fatalistic attitude towards risk/suffering)
 – factual incomprehension (don’t understand it)
 – emotional refusal (don’t want it)
 – insufficient endorsement (don’t do it)

• clinical
 – too simplistic or insufficient quality (lack of content quality)
 – lack in workflow integration (lack of process quality)

• technical
 – lack in structured patient data (documentation)
 – insufficient data/semantic interoperability (data and terminology standards)

• financial
 – insufficient funds (often not true!)

⇒ How to overcome these barriers? By clinically useful solutions.