

(AMEN-HIV).

Australian Molecular

Australian Molecular

-

ECOMENANTS

 B subtype C subtype AE subtype CONTRACTOR - A.S. AS INSUFFICIENT DAT CREVE AL OTHER E LC.IC

A C. IC

- HIV-1 is a genetically variable and rapidly mutating virus
 - · Phylogenetic analysis: statistical approach, used globally.
 - Viral sequence similarity:
 - · More likely from a transmission chain/network (does not infer direct transmission)
 - More likely to be found in early versus long-term infection (host factors)
 - · Dependent on sequence quality and length of HIV-1 sequence assessed

Sainani K w ora

All states and territories represented (NT + Tas → Vic)

724

Wester

Nothern

South

351

Overall:

4873 sequences

- · Ethics and governance framework established De-identified HIV-1 sequence results
 - · Gender, age, state

Australian Molecular

-

- Year of sequencing
- HIV-1 sequences (RT + PR) 2005 - 2012
- Data analysis at one site
 - · Sequence alignments checked
 - Duplicate sequences checked
- Complete dataset other than NSW

1579

551

1668

Results: Proportion of HIV-1 sequences committed per State to the AMEN study

State		Non B (%)	B (%)	Total
QLD		283 (17.9%)	1296 (82.1%)	1579
SA		111 (31.6%)	240 (68.4%)	351
VIC		407 (24.4%)	1261 (75.6%)	1668
WA		297 (41.0%)	427 (59.0%)	724
W NSW	'	144 (26.1%)	407 (73.9%)	551
TOTAL		1242 (25.5%)	3631 (74.5%)	4873

Australian Molecular

MEGA provides the Bootstrap test -reliability of Phylogenetic tree

Australian Molecular

Evidence of

phylogenetic cluster

(similar HIV-1 sequences)

CLUSTERING CRITERIA

Bootstrap ≥98%

Genetic distance

≤1.5%

Nucleotide sequences are re-sampled 100 times.

Maximum-Likelihood branch lengths are computed.

How likely is it that sequences will cluster together statistically in repeated analyses? (≥ 98 out of 100 times)

How genetically similar are the sequences? (≥ 98.5% identical)

gender

Significantly more non B pairs than non B larger networks (p=0.003) Larger network size (>2) with B subtypes than the non B subtypes (p=0.021).

Australian Molecular Results: Proportion of B and Non-B

-

sub-type networks according to

Australian Molecular Epidemiology Network

- AMEN collaboration has established a national approach to HIV-1 molecular epidemiology studies
 - Ethics and Governance frameworks are in place
 - National database: prospective as well as retrospective dataset
 - Inclusion of NSW data underway
 - Platform for research collaboration: non-affiliated.
- Not a contact tracing analysis
 - · De-identified baseline viral sequencing data

Australian Molecular Epidemiology Network

Conclusions

- HIV-1 subtypes in Australia
 - Overall ~25% of sequences are non-B-subtype
 Increasing proportions across all states, with a broad range of subtypes reflecting geographic origins.
 - Reflects a growing influence of migration and travel
 - Wide age distribution for both B- and non-Bsubtype virus
 - More pediatric cases with non-B subtypes
 - More females with non-B subtypes (esp. C-subtype)
 - B-subtype sequences remain predominantly associated with males

Australian Molecular Epidemiology Network

- HIV-1 phylogenetic clusters in Australia
 - Overall ~23% sequences classified within clusters
 - Similar proportions of B-subtype (23%) and non-Bsubtype (25%) sequences within clusters
 - Higher proportion of male/female clusters in non-B
 - C-subtype (S Africa, India): 90%
 - AE-subtype (SE Asia): 50%
 - B-subtype: 12%
 - No obvious clustering according to state. Significant proportion of clusters involve sequences from more than 1 state (20% of pairs, 44% of larger clusters)

- Highlights the national structure of HIV-1 in Australia
 - Common challenges to all states
 - Growing impact of travel and migration
 - Benefits of engagement with international partners
 - Provides a basis for creating and monitoring prevention strategies
- Valuable data: now and for future
 - Collaborative network: facilitated engagement with clinical, scientific and community organizations

Australian Molecular Epidemiology Network

allison.castley@health.wa.gov.au

ian Molecular ilology Network	Results: Proport from interstate o networks accord		
Networks	with a B-subtype	Networks with a Non-B-s	ubtype
network network	prix network network network	80 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	twork 6
	Interstate	Intrastate	

Results: Factors associated with a sequence	
being classified into a cluster (y,n:>18yo)	

	Overall	WA	SA	VIC	WM NSW	QLD
AGE	-0.003	-0.005	-0.002	-0.001	-0.008	-0.003
	p<0.001	p<0.001	p=0.3	p=0.34	p<0.001	p=0.003
SEQ	0.05	0.05	0.07	0.03	0.02	0.04
ERA	p<0.001	p<0.001	p<0.001	p=0.002	p=0.13	p=0.001
Gender	-0.01	-0.06	0.02	-0.09	-0.02	-0.02
	p=0.023	p=0.17	p=0.69	p=0.03	p=0.59	p=0.54
Non-B	-0.05	-0.07	-0.08	0.05	-0.02	0.07
vs B	p=0.021	p=0.058	p=0.11	p=0.08	p=0.67	p=0.02
State	0.01 p=0.41	-	-	-	-	-

Coefficient and significance

Australian Molecular

80

60

40

20

0.

netv

27

Variables associated with the classification of sequences into larger network size 2-3 or >3. (>18yo, not pairs)

	Overall	WA	SA	VIC	W NSW	QLD
AGE	0.002	-0.001	-0.001	0.001	-0.01	0.006
	p=0.2	p=0.72	p=0.8	p=0.77	p=0.04	p=0.01
SEQ	0.03	0.09	-0.003	0.003	0.02	0.03
ERA	p=0.05	p=0.004	p=0.96	p=0.88	p=0.7	p=0.4
Gender	-0.12	-0.02	0.03	-0.4	0.13	-0.04
	p=0.008	p=0.86	p=0.8	p<0.001	p=0.17	p=0.6
Non-B	-0.03	-0.34	-0.07	0.09	-0.07	0.03
Vs B	p=0.34	p<0.001	p=0.6	p=0.12	p=0.51	p=0.7
State	0.003 p=0.7	-	-	-		

Coefficient and significance

28