Pre-stimulus patterns of activity in early visual cortex bias stimulus perception

Auréliane Pajani ¹, Peter Kok ², Tobias Donner ³, Sid Kouider ¹, Floris de Lange ²

- ¹ Laboratoire de Sciences Cognitives & Psycholinguistique, Ecole Normale Supérieure CNRS, Paris, France
- ² Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- ³ Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands

Signal-like fluctuations in noise can trigger (erroneous) stimulus detection

(Wyart et al., PNAS, 2012)

Signal-like fluctuations in noise can trigger (erroneous) stimulus detection

- False Alarms occur mainly with high signal energy noise patches:
 - the visual system is sensitive to slight signal-like fluctuations in noise
 - False Alarms are genuine perceptual errors (*vs* pure strategic guesses)

Signal-like fluctuations in noise can trigger (erroneous) stimulus detection

- □ False Alarms occur mainly with high signal energy noise patches:
 - the visual system is sensitive to slight signal-like fluctuations in noise
 - False Alarms are genuine perceptual errors (vs pure strategic guesses)
- But False Alarms also arise with low signal energy noise patches: Endogenous orientation-specific fluctuations in neural activity?

Expectations evoke stimulus templates in early visual cortex

(Kok et al., J Cog Neuro, 2014)

Expectations evoke stimulus templates in early visual cortex

Perceptual expectations activate signal-selective units in early visual cortex when stimulus is absent

Expectations evoke stimulus templates in early visual cortex

- Perceptual expectations activate signal-selective units in early visual cortex when stimulus is absent
- Could this signal fluctuate over time and favor False Alarms in a detection task?

Detection task with gabors of a constant orientation:

Noise:

Noise $+45^{\circ}$ gabor:

Detection task with gabors of a constant orientation:

Noise:

Noise + 45° gabor:

Expectation' signal in early visual cortex: increased activity in orientation-specific neurons (Kok et al., J Cog Neuro, 2014)

Detection task with gabors of a constant orientation:

Noise:

Noise $+45^{\circ}$ gabor:

- Expectation' signal in early visual cortex: increased activity in orientation-specific neurons (Kok et al., J Cog Neuro, 2014)
- This 'expectation' signal would fluctuate over time, and favor False Alarms when it is strong prior to stimulus presentation

Detection task with gabors of a constant orientation:

Noise:

Noise $+45^{\circ}$ gabor:

- 'Expectation' signal in early visual cortex: increased activity in orientation-specific neurons (Kok et al., J Cog Neuro, 2014)
- This 'expectation' signal would fluctuate over time, and favor False Alarms when it is strong prior to stimulus presentation

Paradigm

Detection of a gabor patch embedded in gaussian white noise, at individual contrast threshold

Paradigm

- Detection of a gabor patch embedded in gaussian white noise, at individual contrast threshold
- One single orientation in each run, 45° or 135°

Paradigm

- Detection of a gabor patch embedded in gaussian white noise, at individual contrast threshold
- One single orientation in each run, 45° or 135°
- Dynamic noise: fixed set of 60 noise patches with low signal energy (< 2%) in a random sequence -> False Alarms cannot be caused by between-trials fluctuations in exogenous noise

Results: pre-stimulus activity in V1

Results: pre-stimulus activity in V1

Pre-stimulus activity is lower for False Alarms

Results: pre-stimulus activity in V1

- Pre-stimulus activity is lower for False Alarms
- Consistent with previous work: lower pre-stimulus baseline before errors
 -> fluctuations in attention & precision of perceptual inference
 (cf Feldman & Friston, Front Human Neuro, 2010)

□ Select 45° and 135°-selective voxels from independent localizer run

- □ Select 45° and 135°-selective voxels from independent localizer run
- During pre-stimulus scans, look at the difference in activity between
 - voxels selective of the orientation to detect (45° voxels in 45° blocks and 135° voxels in 135° blocks)
 - voxels selective of the other orientation (135° voxels in 45° blocks and 45° voxels in 135° blocks)

- □ Select 45° and 135°-selective voxels from independent localizer run
- During pre-stimulus scans, look at the difference in activity between
 - voxels selective of the orientation to detect (45° voxels in 45° blocks and 135° voxels in 135° blocks)
 - voxels selective of the other orientation (135° voxels in 45° blocks and 45° voxels in 135° blocks)

- □ Select 45° and 135°-selective voxels from independent localizer run
- During pre-stimulus scans, look at the difference in activity between
 - voxels selective of the orientation to detect (45° voxels in 45° blocks and 135° voxels in 135° blocks)
 - voxels selective of the other orientation (135° voxels in 45° blocks and 45° voxels in 135° blocks)

Orientation-specific pattern of activity before False Alarms

□ It was previously shown that signal-like fluctuations in stimulus noise could favor False Alarms (Wyart et al., PNAS, 2012)

- It was previously shown that signal-like fluctuations in stimulus noise could favor False Alarms (Wyart et al., PNAS, 2012)
- □ In the absence of such exogenous fluctuations, endogenous fluctuations in prestimulus patterns of activity in early visual cortex also bias perceptual decisions: stronger BOLD signal in voxels selective of the orientation presented during the block before False Alarms

- □ It was previously shown that signal-like fluctuations in stimulus noise could favor False Alarms (Wyart et al., PNAS, 2012)
- In the absence of such exogenous fluctuations, endogenous fluctuations in prestimulus patterns of activity in early visual cortex also bias perceptual decisions: stronger BOLD signal in voxels selective of the orientation presented during the block before False Alarms
- Consistent with computational modeling of behavioral data by Wyart *et al.*, which suggest increased baseline activity in signal-selective units before False Alarms

- □ It was previously shown that signal-like fluctuations in stimulus noise could favor False Alarms (Wyart et al., PNAS, 2012)
- In the absence of such exogenous fluctuations, endogenous fluctuations in prestimulus patterns of activity in early visual cortex also bias perceptual decisions: stronger BOLD signal in voxels selective of the orientation presented during the block before False Alarms
- Consistent with computational modeling of behavioral data by Wyart *et al.*, which suggest increased baseline activity in signal-selective units before False Alarms
- Origin of the fluctuations in pre-stimulus patterns of activity:
 - 'perceptual expectations' signal (Kok et al., J Cog Neuro, 2014)
 - mental imagery (Albers *et al.*, Current Biology, 2013)
 - feature-based attention
 - (random noise fluctuations)

Acknowledgements

☐ In the Netherlands:

- Floris de Lange
- Peter Kok

☐ In France:

■ Sid Kouider

■ Tobias Donner

Acknowledgements

□ In the Netherlands:

- Floris de Lange
- Peter Kok
- Elexa St John Saaltink
- Erik Meijs
- Paul Gaalman
- Thomas Meindertsma
- & the PredAttors

- Universiteit van Amsterdam
- Tobias Donner

☐ In France:

LSCP:

- Sid Kouider
- Sylvain Charron
- Romain Granchamp
- & the Consciousness team

LNC:

■ Valentin Wyart

LPP:

Nathalie Serafin

Acknowledgements

In the Netherlands :

- Floris de Lange
- Peter Kok
- Elexa St John Saaltink
- Erik Meijs
- Paul Gaalman
- Thomas Meindertsma
- & the PredAttors

Tomorrow:

10:30 am, room P6
On The Role Of Expectation In Visual
Perception: A Top-Down View Of
Early Visual Cortex

In France :

LSCP:

- Sid Kouider
- Sylvain Charron
- Romain Granchamp
- & the Consciousness team

LNC:

■ Valentin Wyart

LPP:

Nathalie Serafin

Universiteit van Amsterdam

Tobias Donner

Thank you!

- □ Select 45° and 135°-selective voxels from independent localizer run
- During pre-stimulus scans, look at the difference in activity between
 - voxels selective of the orientation to detect
 - voxels selective of the other orientation

Paradigm: session structure

- One orientation in each run, 45° or 135° (order counterbalanced across participants)
- □ 1 run = 50 trials,grating present in 1/5 of the trials

- Staircase for each orientation (QUEST, 70% correct)
- Localizer with high-contrast gabors(8 orientations + fixation)

- 25 participants
 - 6 excluded (< 3 FAs for each orientation)
 - = 19 participants

fMRI data processing

- Pre-processing:
 - SPM: Realign, Coregister
 - Matlab: filter, detrend, normalize
- Voxel selection:
 - Freesurfer: V1 masks from anatomical data
 - SPM: contrast 'grating vs fixation' during localizer

select the 500 voxels with highest positive T-values = most 'gabor-reponsive' voxels in V1

Multivariate analysis

■ Voxel population split: contrast '45° vs 135°' during independent localizer run (similar to Kok *et al.*, Journal of Cognitive Neuroscience, 2014)

- Difference in BOLD signal in those 2 voxel populations between
 - preferred orientation blocks
 - non-preferred orientation blocks

Multivariate analysis

Orientation specific signal =

BOLD response during runs of the preferred orientation

- BOLD response during runs of the non-preferred orientation

