Estimating HSV-2 superinfection using a novel custom genotyping platform

Christine Johnston 15 September 2015 2015 STD& HIV World Congress

WASHINGTON

Disclosures

- U.S. National Institutes of Health: Grant recipient
- · AiCuris GmbH, Sanofi : Principal Investigator
- Agenus, Genocea, Vical: Co-investigator

Why is HSV-2 superinfection relevant?

HSV-2 prophylactic vaccines are needed to control the HSV-2 epidemic

Does the natural immune response to HSV-2 protect against infection with another strain?

Will we need to create a vaccine that elicits a better or different response than natural infection?

HSV-2 superinfection: What is known?

No standard method for HSV-2 genotyping

HSV-2 infection with more than one strain ("superinfection") has been reported in small studies PCR based assays of variable HSV DNA repeats HIV seronegative: 1/8 (12.5%) HIV seropositive: 11/11 (100%)

Superinfection has been reported for other herpesviruses -CMV: 29% of pregnant women had 2 or more strains

> Roest JID 2006 Ross et al JID 2010

Aims and Hypotheses

Aim:

Determine the prevalence of and risk factors for HSV-2 superinfection.

Hypotheses:

Prevalence of superinfection: • Higher in women vs. men

- Higher in those with >10 sex partners vs. <10 sex partners
- Higher in HIV-infected vs. HIV-uninfected

Approach

Phase I: Next generation sequencing to identify population prevalent SNP Phase II: Create genotyping platform and genotype paired samples

HSV-2 Genomic variation

- Illumina sequencing
- Genital swab samples from 39 people
- USA, Peru, Africa
- 2481 SNPs
- 456 prevalent SNPs evaluated for genotyping

Identification of informative SNPs

Most informative SNPS for genotyping ranked using FastTagger

With 96 SNPs:

Able to determine whether samples match or do not match with >90% probability

96 SNPs best able to distinguish between specimens chosen for GoldenGate

GoldenGate Workflow

- Bead array based platform developed for human high throughput genotyping
- Biotin label DNA hybridize to allele specific SNP oligos
 - A "call" for each of 96 SNPs is generated
 All samples with a call rate≥ 90% SNPs considered valid

Comparison to deep sequencing: 8 samples matched at all sites

Methods

- Compare SNP results from paired samples
- Define superinfection≥5 SNPs different between pairs
- Confirm mismatched pairs are from the same person
 Deletion/insertion polymorphisms on human DNA used for forensic analysis

Samples

- Specimen repository
 - UW-Virology Research Clinic (Washington, USA)
 - HIV Prevention Trials (HPTNo39, PIP)
 - Peru, sub-Saharan Africa
 - Well defined cohorts (HIV status, sexual exposure)
 - Genital swabs containing ≥5 log10 copies HSV DNA/ml
 - 2 samples collected from same individual over time
 Paired samples provide ability to detect superinfection

Results

- 1152 samples
 - 59 negative controls (4-6 per plate)
 - Median call rate: 29% (IQR: 12-45%)

1093 experimental samples

- 1004 (92%) had call rate ≥90%
- 960 paired samples (480 pairs)
 - 17 pairs without matching HSV sequences pending confirmation that they are from the same person
 - Excluded from this preliminary analysis

11 SNPs did not perform well and were excluded

Demographics

	463 Pairs
Male	215 (46%)
Median Age (IQR)	34 (27, 44)
Continent	
North America (US)	274 (59%)
South America (Peru)	60 (13%)
Africa (*)	129 (28%)
Lifetime number of sexual partners	11 (3,34)
median (IQR)	
HIV seropositive	133 (29%)
Median months between samples (IQR)	5 (2, 11)

*Botswana, Cameroon , Kenya, South Africa, Tanzania, Uganda, Zambia, Zimbabwe

Prevalence of superinfection

	Number of pairs	
Number of mismatches	Related pairs N=463	Unrelated pairs N=1920
None	418 (90.3%)	4 (0.2%)
1-4	23 (4.9%)	11(0.6%)
≥ 5	22 (4.8%)	1905 (99.2%)

Prevalence of superinfection (≥5 mismatches): 22/463 (4.8%), (95% CI: 2.8%, 6.7%)

Number of mismatches between paired specimens

Risk factors for superinfection

	Univariate analysis		Multivariate analysis*	
Characteristic	RR (95% CI)	p-value	RR (95% CI)	p-value
Male	0.7 (0.3, 1.5)	0.337		
Age in decades	0.8 (0.5, 1.2)	0.234		
Continent				
North America (US)	Ref	Ref	Ref	Ref
South America (Peru)	3.6 (1.0, 13.2)	0.0491	2.7 (0.7, 10.2)	0.150
Africa (*)	5.5 (2.0, 15.2)	0.001	4.0 (1.4, 11.5)	0.011
Lifetime # sex partner	0.9 (0.8, 1.2)	0.592		
(each additional ten)				
HIV seropositive	5.3 (2.2, 12.8)	0.0002	4.0 (1.6, 10.1)	0.0035
Samples ≥ 3 years apart	4.3 (1.5, 12.3)	0.0077		
Poisson regression				

*No interaction between HIV status and continent

Modeling the prevalence of superinfection

Only 2 samples tested per person Incorporate diversity and distribution of viral types Prevalence superinfection~20%

Conclusions

Naturally induced immunity at ganglion or mucosa is not sufficient to prevent reinfection Implications for vaccine development.

- BUT, prevalence of superinfection is relatively low (~5%) -This is likely lowest estimate, given that 2 samples were performed per person, variable follow up
- Increased risk of superinfection in persons with HIV infection -Lack of immunity?
- Increased risk of superinfection in Africa -Given high seroprevalence, increased exposure?

Strengths/Limitations

Strengths:

Large well characterized dataset Novel, robust methodology based on rationally chosen SNPs to differentiate strains

Limitations:

Convenience dataset

Confirmation that additional samples are from the same person pending

Definitions for strains are needed

Acknowledgements

- Sequencing
 Anna Rashevsky
 Stacy Selke
 Meei-Li Huang
 Jon Guan
 Cassie Sather
- Modeling
 Dan Reeves
 Josh Schiffer
- Data Analysis
 Matt Fitzgibbon
 - Kurt Diem
 Amalia Magaret
 Anqi Cheng

- Pls Anna Wald
 David Koelle
- Participants
- Specimens

 - Connie Celum
 Jairam Lingappa

- Funders

 NIH R21 Alg6058
 NIH P01 Al030731

4