

Microstructural Measures of the Developing Brain and it's Response to Learning: Evidence from Neuroimaging

Chris Clark
Imaging and Biophysics Unit
UCL Institute of Child Health

Dyscalculia and the IPS

Some brief basics of diffusion MRI

Sexual dimorphisms: role of puberty

Tractography and advances in diffusion MRI

Graph theory and brain networks

Mapping the g ratio

Dyscalculia and the IPS

Some brief basics of diffusion MRI

Sexual dimorphisms: role of puberty

Tractography and advances in diffusion MRI

Graph theory and brain networks

Mapping the g ratio

Brain (2001), 124, 1701-1707

Calculation difficulties in children of very low birthweight

A neural correlate

E. B. Isaacs, ¹ C. J. Edmonds, ¹ A. Lucas ¹ and D. G. Gadian ²

¹MRC Childhood Nutrition Research Centre and ²Radiology and Physics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK

Correspondence to: Dr E. B. Isaacs, MRC Childhood Nutrition Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK E-mail: E.Isaacs@ich.ucl.ac.uk

COGNITIVE NEUROPSYCHOLOGY, 2003, 20 (3/4/5/6), 487-506

THREE PARIETAL CIRCUITS FOR NUMBER PROCESSING

Stanislas Dehaene, Manuela Piazza, Philippe Pinel, and Laurent Cohen INSERM-CEA, Service Hospitalier Frédéric Joliot, Orsay, France

- bilateral horizontal segment of intraparietal sulcus (HIPS)
- left angular gyrus (AG)
- bilateral posterior superior parietal lobe (PSPL)

Dyscalculia and the IPS

Some brief basics of diffusion MRI

Sexual dimorphisms: role of puberty

Tractography and advances in diffusion MRI

Graph theory and brain networks

Mapping the g ratio

Diffusion Coefficient

Diffusion is a time dependent process

Molecules diffuse further from their starting point as time increases

$$\langle \mathbf{r}^2 \rangle = 6\mathbf{D}\mathbf{t}$$

Diffusion is sensitive to tissue structure

Diffusion is lower (slower) in tissue than free water Due to presence of cell membranes and structures

Mean diffusivity (MD)

Fractional anisotropy (FA)

Dyscalculia and the IPS

Some brief basics of diffusion MRI

Sexual dimorphisms: role of puberty

Tractography and advances in diffusion MRI

Graph theory and brain networks

Mapping the g ratio

Tract-Based Spatial Statistics (TBSS)

Pros:

- Voxel-based analysis (local differences)
- No need for smoothing
- Reduces multiple comparisons problem

Cons:

- Only looks at centre of white-matter tracts (lots of voxels excluded)
- Not focussing on individual tracts

TBSS results (FA – boys, positive correlation)

TBSS results (MD – boys, negative correlation)

TBSS results (λ_{radial} – boys, negative correlation)

TBSS results (girls FA, MD – no correlation)

Gender differences in white matter development

Dyscalculia and the IPS

Some basics of diffusion MRI

Sexual dimorphisms: role of puberty

Tractography and advances in diffusion MRI

Graph theory and brain networks

Mapping the g ratio

Tournier et al Neuroimage 2007

frontiers in **HUMAN NEUROSCIENCE**

ORIGINAL RESEARCH ARTICLE

published: 24 November 2009 doi: 10.3389/neuro.09.051.2009

Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography

Elena Rykhlevskaia^{1,2}, Lucina Q. Uddin¹, Leeza Kondos¹ and Vinod Menon^{1,3,4}*

- ¹ Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
- ² Department of Psychology, Stanford University, CA, USA
- ³ Program in Neuroscience, Stanford University, CA, USA
- ⁴ Symbolic Systems Program, Stanford University, CA, USA

Limitations of FA and some ways forward

Use more advanced models of diffusion for tractography

However, DTI parameters still the mainstay and reported in tracts

Suffer from lack of specificity

For example FA affected by both axon density/diameter and dispersion

More sophisticated models available

Based on multi-compartmentation

Note: more complex models require more data!

Zhang et al Neuroimage 2012

Maps of FA and NODDI estimates: Orientation Dispersion (OD), Neurite Density, and CSF fraction. Arrows highlight areas where disentangling the two main factors contributing to FA provides more specific information about the underlying tissue.

Overview

Dyscalculia and the IPS

Some basics of diffusion MRI

Sexual dimorphisms: role of puberty

Tractography and advances in diffusion MRI

Graph theory and brain networks

Mapping the g ratio

Learning effects: what can be measured with qMRI?

Networks and the "connectome"

Overview

Dyscalculia and the IPS

Some basics of diffusion MRI

Sexual dimorphisms: role of puberty

Tractography and advances in diffusion MRI

Graph theory and brain networks

Mapping the g ratio

Learning effects: what can be measured with qMRI?

Could sex differences in white matter be explained by g ratio?

Tomáš Paus^{1,2}* and Roberto Toro³

- ¹ Brain and Body Centre, University of Nottingham, Nottingham, UK
- ² Montreal Neurological Institute, Montreal, QC, Canada
- 3 Institut Pasteur, Paris, France

Can the g ratio be measured using MRI in vivo?

In vivo measurement of the myelin g-ratio with histological validation

Nikola Stikov¹, Jennifer S.W. Campbell¹, Mariette Lavallée¹, Thomas Stroh¹, Stephen Frey¹, Jennifer Novek¹, Stephen Nuara¹, Ming-Kai Ho¹, Barry Bedell¹, and G. Bruce Pike^{1,2}

¹Montreal Neurological Institute, McGill University, Montreal, QC, Canada, ²Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada

Proc. Intl. Soc. Mag. Reson. Med. 22 (2014) 0102.

AVF	.42	.36	.38	.35	.30	.38	.27	.71
MVF	.40	.40	.47	.29	.34	.35	.58	.28
g-ratio	.72	.69	.67	.74	.69	.72	.57	.85
Imaging	20μm							
Histology	Genu (1)	(2)	(3)	(4)	(5)	(6)	(7)	Splenium (8)
AVF	.36 (.02)	.33 (.04)	.25 (.03)	.33 (.02)	.39 (.03)	.31 (.02)	.25 (.01)	.37 (.04)
/hv.i	31.55							
MVF	.40 (.05)	.38 (.02)	.35 (.02)	.36 (.03)	.37 (.02)	.44 (.02)	.43 (.03)	.29 (.03)

AVF	.42	.36	.38	.35	.30	.38	.27	.71
MVF	.40	.40	.47	.29	.34	.35	.58	.28
g-ratio	.72	.69	.67	.74	.69	.72	.57	.85
Imaging	. 20µm					**		
								The second secon
Histology	Genu (1)	(2)	(3)	(4)	(5)	(6)	(7)	Splenium (8)
Histology AVF	Genu (1) .36 (.02)	.33 (.04)	(3) .25 (.03)	(4) .33 (.02)	(5) .39 (.03)	(6) .31 (.02)	(7) .25 (.01)	Splenium (8) .37 (.04)
							0.00	Page 1

r = 0.88, p = 0.011

Overview

Dyscalculia and the IPS

Some basics of diffusion MRI

Sexual dimorphisms: role of puberty

Tractography and advances in diffusion MRI

Graph theory and brain networks

Mapping the g ratio

Learning effects: what can be measured with qMRI?

Microstructural plasticity

Most plasticity studies have involved medium to long term learning (ie weeks or months of training)

Studies have mainly looked for gross changes to the shape or volume of grey matter areas, or signs of improved connectivity of the white matter tracts

Yaniv Assaf's group in Tel Aviv has conducted a series of studies using DTI techniques to examine microstructural changes within the brain's grey matter induced by training over a period of hours

Neuron

Article

Learning in the Fast Lane: New Insights into Neuroplasticity

Yaniv Sagi,^{1,2} Ido Tavor,^{1,2} Shir Hofstetter,¹ Shimrit Tzur-Moryosef,¹ Tamar Blumenfeld-Katzir,¹ and Yaniv Assaf^{1,*}
¹Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel

²These authors contributed equally to this work

*Correspondence: assafyan@post.tau.ac.il

DOI 10.1016/j.neuron.2012.01.025

The Learning Task:

Subjects performed 16 laps of the same computer car game track, divided into 4 sessions. The objective was to learn the track and achieve better lap times.

While repeating the same track over and over again, subjects can memorize the track and its scenery and learn to perform better from trial to trial.

Changes in Mean Diffusivity (MD)

Region of Interest (RoI) analysis

Dyscalculia: IPS and many other brain areas involved

Diffusion MRI used sparingly so far

Sexual dimorphisms: puberty may be important

More specific diffusion MRI methods such as NODDI have potential

Graph theory and networks can provide a whole brain approach

New methods can potentially map the g ratio

UCL

Overview: Conclusions

Dyscalculia: IPS and many other brain areas involved

Diffusion MRI used sparingly so far

Sexual dimorphisms: puberty may be important

More specific diffusion MRI methods such as NODDI have potential

Graph theory and networks can provide a whole brain approach

New methods can potentially map the g ratio

Dyscalculia: IPS and many other brain areas involved

Diffusion MRI used sparingly so far

Sexual dimorphisms: puberty may be important

More specific diffusion MRI methods such as NODDI have potential

Graph theory and networks can provide a whole brain approach

New methods can potentially map the g ratio

Dyscalculia: IPS and many other brain areas involved

Diffusion MRI used sparingly so far

Sexual dimorphisms: puberty may be important

More specific diffusion MRI methods such as NODDI have potential

Graph theory and networks can provide a whole brain approach

New methods can potentially map the g ratio

Dyscalculia: IPS and many other brain areas involved

Diffusion MRI used sparingly so far

Sexual dimorphisms: puberty may be important

More specific diffusion MRI methods such as NODDI have potential

Graph theory and networks can provide a whole brain approach

New methods can potentially map the g ratio

Dyscalculia: IPS and many other brain areas involved

Diffusion MRI used sparingly so far

Sexual dimorphisms: puberty may be important

More specific diffusion MRI methods such as NODDI have potential

Graph theory and networks can provide a whole brain approach

New methods can potentially map the g ratio

Dyscalculia: IPS and many other brain areas involved

Diffusion MRI used sparingly so far

Sexual dimorphisms: puberty may be important

More specific diffusion MRI methods such as NODDI have potential

Graph theory and networks can provide a whole brain approach

New methods can potentially map the g ratio

Dyscalculia: IPS and many other brain areas involved

Diffusion MRI used sparingly so far

Sexual dimorphisms: puberty may be important

More specific diffusion MRI methods such as NODDI have potential

Graph theory and networks can provide a whole brain approach

New methods can potentially map the g ratio

Acknowledgements

Dr Kiran Seunarine (UCL) for the gender study

Dr Jon Clayden (UCL) for the graph theory pictures

Professor Brian Butterworth (UCL) for inviting me to take part in this symposium and introducing me to the field of mathematical cognition and dyscalculia

Acknowledgements

Dr Kiran Seunarine (UCL) for the gender study

Dr Jon Clayden (UCL) for the graph theory pictures

Professor Brian Butterworth (UCL) for inviting me to take part in this symposium and introducing me to the field of mathematical cognition and dyscalculia

Thank you for listening