- Imaging Symposium
- February 23, 2019

KAISER PERMANENTE

The Basics of Cardiac Rb PET/CT

Mark C. Hyun, CNMT, NCT, RS, RT(N,R,CT), FASNC Cardiac Imaging Research Specialist

CEDARS-SINAI.

LEADING THE QUEST

Introduction

- Patients with suspected or known CAD benefit from the information provided by a noninvasive cardiac imaging test, regarding the presence, extent, and severity of CAD.
- An important goal of imaging is to provide a high quality appropriate test for the right patient at the right time.
- These goal include effective, safe, efficient, patientcentered, equitable, and timely care.

•

 \bullet

ASNC

J Nucl Cardiol 2016

ASNC/SNMMI POSITION STATEMENT

AMERICAN SOCIETY OF NUCLEAR CARDIOLOGY AND SOCIETY OF NUCLEAR MEDICINE AND MOLECULAR IMAGING JOINT POSITION STATEMENT ON THE CLINICAL INDICATIONS FOR MYOCARDIAL PERFUSION PET

Writing Group:

Timothy M. Bateman MD (Co-Chair), Vasken Dilsizian MD (Co-Chair), Rob S. Beanlands MD, E. Gordon DePuey MD, Gary V. Heller MD, PhD, David A. Wolinsky MD

Expert Content Reviewers:

Frank M. Bengel MD; Daniel S. Berman MD; Dennis A. Calnon MD; Paolo Camici MD; James A. Case PhD; Manuel D. Cerqueira MD; Panithaya Chareonthaitawee MD; Robert A. deKemp PhD; Dominique Delbeke MD, PhD; Marcelo F. Di Carli MD; Sharmila Dorbala MD; James W. Fletcher MD; Henry Gewirtz MD; K. Lance Gould MD, PhD; Robert Gropler MD, PhD; Justin A. Lundbye MD; Jamshid Maddahi MD; MD; Terrence Ruddy MD; Heinz R. Schelbert MD, PhD; Thomas H. Schindler MD; Leslee J. Shaw; PhD; H. William Strauss MD; Patrick White MPH.

•

Clinical Indications

<u>Preferred:</u>

 Patients with known or suspected CAD who meet AUC and are unable to complete a diagnostic level exercise stress imaging study

Clinical Indications

<u>Recommended:</u>

- Prior stress imaging study was poor quality, equivocal or inconclusive – attenuation artifact, or discordant with clinical impressions of other diagnostic test results
- Body characteristics (BMI >30, unusual shape, dextrocardia, pleural effusions)
- High-risk patients (kidney dz, DM, known or suspected potentially high-risk CAD)
- Young patients with established CAD
- Myocardial blood flow quantification benefits to exclude multivessel CAD, to improve risk stratification, assessment of microcirculatory function

Important Properties of Myocardial Perfusion PET

- 1. High Diagnostic Accuracy
- 2. Consistent High-Quality Images
- 3. Low Radiation Exposure
- 4. Short Acquisition Protocols
- 5. Quantification of myocardial Blood Flow
- 6. Strong Prognostic Power

Course Outlines

- Compare Cardiac PET Radiopharmaceutical
- Quality Control
 - Rubidium Generator
 - PET/CT Scanner
- Imaging Protocol and Artifacts

The Basics of PET Imaging

Front. Oncol., 13 August 2013

•

The Basics of PET Imaging

- •

- •

PET MPI Tracers

Property	⁸² Rb-chloride	¹³ N-ammonia	¹⁵ O-water	¹⁸ F-flurpiridaz
Isotope production method	Generator	Cyclotron	Cyclotron	Cyclotron
Isotope half-life (min)	1.27	10	2.0	110
Positron range (mm) RMS	2.6	0.57	1.0	0.23
Image resolution (mm) FWHM	8	5	6	5
Effective dose (mSv/GBq)	1	2	1	20
Peak stress/rest* extraction (%)	35/70	95/100	100	95/100
Peak stress/rest* retention (%)	25/70	50/90	0	55/90
Spillover from adjacent organs	Stomach wall	Liver and lung	Liver	Early liver
Regulatory status	FDA-approved; 2 suppliers	FDA-approved; ANDA required for onsite production	Not FDA-approved	Phase 3 trials partially completed
Typical rest dose for 3D/2D (mCi ⁺)	30/45	10/15	20/30	2/3
Typical stress dose for 3D/2D (mCi [†])	30/45	10/15	20/30	6/7
Protocol features	Rapid protocol	Permits exercise [‡] ; delay of 4–5 half-lives between rest and stress unless different doses used	Rapid protocol; no tracer retention for routine MPI	Permits exercise [‡] ; different doses for rest and stress required

•

۲

۲

۲

Myocardial Blood Flow

(Gould KL, Am J Cardiol 1974;33:87-94.)

Myocardial Flow Quantification

•

Extraction Fraction of Tracers

SPECT Tracer

PET Tracer

Higher extraction fractions:

- More accurate stress myocardial blood flow
- Greater defect resolution
- Increased cardiac counts at stress
- Decreased dose to other organs
 - • • •

•

PET Radiopharmceuticals

Radiopharm	Year of FDA Approval	Clinical Indication
F-18 Fluoride	1972	Bone imaging
Rb-82	1992	Myocardial perfusion imaging
F-18 FDG	1994	Epileptic foci
F-18 Fluoride	2000	Bone imaging
N-13 NH3	2000	Myocardial perfusion imaging
F-18 FDG	2000	Epileptic foci in brain Myocardial glucose metabolism Tumor glucose metabolism
F-18 FDG	2005	Alzheimer's disease and Fronto-temporal dementia
	• • •	Jiraporn_PET/CT in Onco 2016

⁸²Rb-chloride

- Potassium analog
- Actively transported across the cell membrane by Na-K pump
- Produced from a Sr-82/Rb-82 generator and IV administered using an infusion pump
- Contains Sr-82 and Sr-85 in a hydrous stannic oxide column
 - Sr-82 T $\frac{1}{2}$ =25 days (parent isotope)
 - Sr-85 T $\frac{1}{2}$ = 65 days (unintended byproduct)
- The "daughter" is Rb-82 chloride (T $\frac{1}{2} \approx 75$ sec)
- Same dose for rest and stress imaging
- On-demand availability

Course Outlines

- Compare Cardiac PET Radiopharmaceutical
- Quality Control
 - Rubidium Generator
 - PET/CT Scanner
- Imaging Protocol and Artifacts

CardioGen-82 Generator

- Generator sits inside a shielded container in the cart
- Automatic infusion system
- Positron detector (Dose calibrator)
- Control Panel

CardioGen-82 Infusion System

• • • • • • • • •

CardioGen-82 Infusion System

Quality Control

- 1. Daily column wash
- 2. Rb-82, Sr-82 and Sr-85 level testing daily prior to patient administration

3. Daily Calibration

CardioGen-82 QC Records

INFUSION TERMINATED NORMALLY 3:45=3.41MC SETPOINT VALUES: Elution Vol. = 99 ml Patient Vol. = 50 ml Patient Dose = 30 mCi Dose Rate Thid. = 1.0 mCi/sec Flow Rate = 50 ml/min Cal. Factor = 1090 ACTUAL INFUSION DATA: Elution Vol. (= 20 ml) Patient Vol. -10 ml Patient Dose = 30.2 mCi Infused Activity Present At End Of Infusion = 29.0 mCi Activity Present Between Det. and Waste Valve = 1.957 mCi in Volume of 0.592 ml Activity Present Between Waste Valve and Pat. = 4.600 mCi in Volume of 1.250 ml

CardioGen-82 Label

Alert Limits

- Sr-82 level exceeds 0.002 µCi Sr-82/mCi Rb-82, or
- Sr-85 level exceeds 0.02 µCi Sr-85/mCi Rb-82, or
- A total elution volume of 14 L has passed through the generator column

Expiration Limits

- Sr-82 level exceeds 0.01 µCi Sr-82/mCi Rb-82, or
- Sr-85 level exceeds 0.1 µCi Sr-85/mCi Rb-82, or
- A total elution volume of 17 L has passed through the generator column, or
- 42 days post calibration date

Worksheets

Ge	nerator Calibrat	I	09101-181381 5/20/2018 Ime" value taken from t		revious Day Cumulative Generator Elution Volume (mL) (Enter information from the previous day's worksheet) (If first day of use, Enter 0) of the Infusion System Report Print Out for every entry	
	Γ		Daily Quality Co	ontrol (QC) Elution Volume Rea	dinas from Infusion Print-Out (mL)	
						Cardiogen-82°
Site Name		CSMC		Reviewed by site signature:		G Cardiogen-82° (Rubidium Rb 82 Generator)
Site Name_		CSINC	•	Reviewed by site signature.		Calibration Worksheet
Deca	y Factors		Gei	nerator Data		
Decay Tir	me	Factor	Generator Lot #	09101-190041		BRACCO
n 30 Sec	2:30	4	Calibration Date	1/4/2019		BRACCO
n 45 sec	3:45	8				
min	5:00	16				LIFE FROM INSIDE

CALIBRATION SHOULD ALWAYS BE DONE AT THE SAME PATIENT DOSE SETTINGS AS WILL BE USED FOR PATIENT INFUSIONS.

The first elution of the day must be discarded in accordance with site specific procedures before starting quality control procedures. Calibration is performed using the standard patient dose parameters. Refer to Rb-82 Infusion System-Calibration Data Sheet in the Infusion System User Guide for instructions

Α	В	C*	D	E	F	G*	H**		J	K	L	Μ
Calibration Infusion Date and Time	Dose Reading from Dose Calibrator (mCi)	Decay Time	Decay Corrected Dose(mCi) (B x Decay Factor)	at End of Infusion		Calib +/- 5%? F= 0.95 - 1.05	Calib +/- 10%? F= 0.90 - 1.10	Is this the first calibration of the new generator?	Factor	New Calib Factor (FxJ)or(J)	Comments	Operator Initials
Ex: 9/28/05: 8:00am	6.07	3:45	48.56	57.2	0.85	NO	NO	Yes	1000	850		KM
Ex: 9/28/05: 8:15am	6.86	3:45	54.88	55.7	0.985	YES	YES	Yes	850	850		KM
1/16/19 0630am	3.56	3:45	28.48	28.9	0.985	YES	YES	No	1090	1090		JSF
1/17/19 0640am	3.63	3:45	29.04	28.7	1.012	YES	YES	No	1090	1090		JSF
									1090	Complete I, G, H		
									Complete I, G, H	Complete I, G, H		

On-Line Data Trak

End of Day	
End of Day	
□	124
■ ▽ Total Number of Patients Dosed on this Day:	3
□ ⊂ Cumulative Daily Volume (mL):	269
□ ▽ Cumulative Volume for this Generator (L):	5.061
□ ▽ Was this the last usage of generator?	□ Yes ☑ No
□ ▽ If Yes, Date of Last Use (DD/MMM/YYYY):	
 When any of the Threshold criteria are met, additional Sr-82/Sr-85 levels must be performed after every 750 mL of eluat The ratio of Sr-82 reaches 0.002 μCi / mCi Rb-82 The ratio of Sr-85 reaches 0.02 μCi / mCi Rb-82 Cumulative volume of the generator reaches 14 Liters 	e volume that passe
 When any of the Expiry criteria are met, the generator has expired and use of the generator should stop immediately. E The ratio of Sr-82 reaches 0.01 μCi / mCi Rb-82 The ratio of Sr-85 reaches 0.1 μCi / mCi Rb-82 Cumulative volume of the generator reaches 17 Liters 43 days of use post generator calibration date has occurred 	xpiry criteria are me

RUBY-FILL Generator

Advancing cardiac PET imaging to be:

	 Constant-activity infusion option Maintains consistent activity rate profiles throughout the life cycle of the generator¹⁻³ 				
Precise					
Flexible	Accurate patient-specific dosing Long shelf life—60 days				
Efficient	Automated daily quality control Built-in safety controls				

RUBY-FILL PI

Determine Rb 82, Sr 82, Sr 85 in the generator eluate:

- Once a day, prior to any drug administration, and
- At additional daily tests after detection of an Alert Limit.
 - \odot 20 L for the generator's cumulative eluate volume, or
 - \circ An eluate Sr 82 level of 0.004 $\mu Ci/$ mCi (kBq/MBq) Rb 82, or
 - \circ An eluate Sr 85 level of 0.04 μ Ci/ mCi (kBq/MBq) Rb 82.
- Perform additional daily tests every 4 patients after detection of an alert limit

Stop use of a generator at any of the following Expiration Limits. o 30 L for the generator's cumulative eluate volume, or o Expiration date of the generator (60 days post-manufacturing) o An eluate Sr 82 level of 0.01 μCi /mCi (kBq/MBq) Rb 82, or o An eluate Sr 85 level of 0.1 μCi /mCi (kBq/MBq) Rb 82

Comparison of Limits: CardioGen-82[®] vs RUBY-FILL®

Limit	Volume (liters)	⁸² Sr Breakthrough (mCi/mCi ⁸² Rb)	⁸⁵ Sr Breakthrough (mCi/mCi ⁸² Rb)	Time (days)
		RUBY-FILL		
Alert	20	0.004	0.04	
Expiratory	30	0.01	0.1	60
		CardioGen-82	2	
Alert	14	0.002	0.02	
Expiratory	17	0.01	0.1	42
				Lewin – ASNC Sept

Course Outlines

- Compare Cardiac PET Radiopharmaceutical
- Quality Control
 - Rubidium Generator
 - PET/CT Scanner
- Imaging Protocol and Artifacts

PET/CT QC

CT Phantom

Dedicated PET QC Procedures

Procedure	Frequency
Acceptance testing (NU 2-2012) ⁵	Once upon delivery and upon major
	hardware upgrades
Daily QC, as recommended by vendor (attenuation blank	Daily
scan, phantom scan, etc.)	
Sensitivity and overall system performance	Weekly preferred (or at least monthly)
Accuracy (corrections for count losses and randoms)	At least annually
Scatter fraction	At least annually
Accuracy of attenuation correction	At least annually
Image quality	At least annually
Measurements specified by the manufacturer	As per the manufacturer

۲

ASNC Imaging Guidelines

۲

۲

•

PET QC: Sinogram

PET QC: Normalization

Detector Controller Failure

Normal Sinogram

Recon image of NEMA/IEC phantom

Non-operational Detector Blocks

Phantom Parameters				
Isotope	Ge-68			
Assay Activity	2.305382 [mCi]			
Assay Date and Time	Thursday, September 17, 2015; 7:37:00			
Volume	8407 [cc]			
Calibration Factor	1.030000			

PET QC Report

Input for Computation	
Daily Sinogram location	\\PETACS\sinograms\CTIEMSINO_2_1_4.0.251570314.s
Proposed ECF Value	3.173e+007 [Bq*s/ECAT counts]
Last Partial Setup	Monday, August 01, 2016; 7:54:32
Last Partial Setup Completion State	setup succeeded
Last Full Setup	Monday, July 11, 2016; 7:55:21
Last Full Setup Completion State	setup succeeded
Partial setup enabled	true
Full setup enabled	false
Time Alignment enabled	false
ICS Name	CT58031
SW Version	PETsyngo_6.7.2 0381.02
Gantry Type	1094

Results		
System Quality Results	(Passed
QC Phantom Activity		Passed
QC succesfully completed. All values are	with	hin valid ranges.
QC Phantom has remaining activity greate	er th	an 0.5 mCi.

Detailed System Quality Report							
Item	Upper Bound	Lower Bound	Value	Decision			
Block Noise	3 [crystal]	0 [crystal]	0 [Block_Outside_Range]	Passed			
Block Efficiency	120 [%]	80 [%]	0 [Block_Outside_Range]	Passed			
Measured Randoms	115 [%]	85 [%]	103.1 [%]	Passed			
Scanner Efficiency	42.38 [cps/Bq/cc]	22.82 [cps/Bq/cc]	33.9 [cps/Bq/cc]	Passed			
Scatter Ratio	36.3 [%]	29.7 [%]	32.8 [%]	Passed			
Scanner efficiency correction factor (ECF)	4e+007 [Bq*s/ECAT counts]	2e+007 [Bq*s/ECAT counts]	3.173e+007 [Bq*s/ECAT counts	Passed			
Image Plane Efficiency	5 [%]	-5 [%]	0 Planes out of range	Passed			

Combined PET/CT QC Procedures

Test	Requirement	Frequency							
Calibration	Mandatory	Monthly*							
Field uniformity	Mandatory	Monthly*							
*or as recommended by the manufacturer									

Test	Frequency
Water phantom QA	Daily
Tube warm-up	Daily
Air calibration ("fast QA)	Daily
Water phantom checks: slice thickness,	Monthly
accuracy, positioning	

Test	Requirement
Registration	Mandatory
Attenuation correction accuracy	Mandatory

۲

ASNC Imaging Guidelines

- •

CT QC

Noise & Uniformity

۲

۲

Linearity

۲

CT QC Record

•

Taper Biograph Quality Assurance Record - Technologist Daily, Weekly and Monthly Checks

DATE	UNUT	h		CTC		DAILY CT # CHECK													
DATE	UNIT	ARTIFACTS											WEEKLY SMPTE CHECK				TECH		
6/1/2018	STATUS		Free of	PASS/	If OK,	Scan		nter	Тор	Right	Bottom	Left	Water CT #		5%	95%	No	PASS/	INITIALS
	(select)	4	Artifacts	FAIL	proceed	Туре	CT#	StdDev	CT#	CT#	CT#	CT#	Uniformity		Visible	Visible	Aliasing	FAIL	
6/1/2018	OPEN		Y	PASS		Axial	-1.40	5.31	-1.77	-1.39	-1.45	-1.87	0.47	PASS					JB
6/2/2018	CLOSED																		
6/3/2018	CLOSED																		
6/4/2018	OPEN		Y	PASS		Axial	-1.43	5.39	-1.39	-1.33	-1.37	-1.50	-0.10	PASS	Y	Y	Y	PASS	JB
6/5/2018	OPEN		Y	PASS		Axial	-1.01	5.44	-1.83	-1.79	-1.90	-2.02	1.01	PASS					JB
6/6/2018	OPEN		Y	PASS		Axial	-1.46	5.33	-1.47	-1.27	-1.52	-1.54	-0.19	PASS					JB
6/7/2018	OPEN		Y	PASS		Axial	-1.66	5.38	-1.15	-1.05	-1.26	-1.71	-0.61	PASS					JN
6/8/2018	OPEN					Axial													
6/9/2018	CLOSED															-			
6/10/2018	CLOSED																		
6/11/2018	OPEN					Axial													
6/12/2018	OPEN					Axial													
6/13/2018	OPEN					Axial													
6/14/2018	OPEN					Axial													
6/15/2018	OPEN					Axial													
6/16/2018	CLOSED																		
6/17/2018	CLOSED																		
6/18/2018	OPEN					Axial													
6/19/2018	OPEN					Axial							_						
6/20/2018	OPEN					Axial							A						
6/21/2018	OPEN					Axial							#N/A						
6/22/2018	OPEN					Axial							/A						
6/23/2018	CLOSED								.6				/A						
6/24/2018	CLOSED									.3			21						
6/25/2018	OPEN					Axial							/A						
6/26/2018	OPEN					Axial													
6/27/2018	OPEN					Axial													
6/28/2018	OPEN					Axial													
6/29/2018	OPEN					Axial													
6/30/2018	CLOSED																		
		_[

CT QC Artifacts

Course Outlines

- Compare Cardiac PET Radiopharmaceutical
- Quality Control
 - Rubidium Generator
 - PET/CT Scanner
- Imaging Protocol and Artifacts

Technical Advantages of Rb PET

- High spatial & temporal resolution
- High count density
- Reliable attenuation & scatter correction
- Short half-life radionuclides
- Short image acquisition protocols
- Tracers with superior kinetics
- Validated models for quantifying myocardial blood flow (MBF)

PET 2D vs 3D Imaging

Recommendation:

Validated 3D imaging should be used whenever possible for both dose reduction & high-quality images

INFORMATION STATEMENT

Status of cardiovascular PET radiation exposure and strategies for reduction: An Information Statement from the Cardiovascular PET Task Force

James A. Case, PhD,^a Robert A. deKemp, PhD,^b Piotr J. Slomka, PhD,^c Mark F. Smith, PhD,^d Gary V. Heller, MD, PhD,^e and Manuel D. Cerqueira, MD^f

J Nucl Cardio. May 2017

3D mode–All photons accepted

Count Sensitivity (%)

•

Radiation Effective Doses (mSv)

Study protocol	Isotope	Modality	Activity (mCi) ^क	E (mSv)
Rest + stress perfusion	⁸² Rb-chloride	3D PET 2D PET	25 + 25 50 + 50	$\begin{pmatrix} 2\\ 4 \end{pmatrix}$
Rest + stress perfusion	¹³ N-ammonia	3D PET 2D PET	10 + 10 20 + 20	2 4
Rest viability, sarcoid, or inflammation (+ perfusion)	18 F-FDG ($+^{13}$ NH ₃ or 82 Rb)	3D PET 2D PET	5 (+10 or 25) 10 (+20 or 50)	3.5 (+ 1) 7 (+ 2)
Stress-only perfusion (ultra-low-dose) Stress-only perfusion (full-dose) Rest + stress perfusion one-day (half-dose)	^{99m} Tc-sestamibi ^{99m} Tc-sestamibi ^{99m} Tc-sestamibi ^{99m} Tc-tetrofosmin	CZT-SPECT GC-SPECT CZT-SPECT	30	1 10 6.4 5.6
Rest + stress perfusion one-day (full-dose)	^{99m} Tc-sestamibi ^{99m} Tc-tetrofosmin	GC-SPECT	10 + 30	13 11

J Nucl Cardiol, May 2017; 1071-3581

•

۲

•

Pharmacologic Stress Comparison

•

Rest Rb Study

•

Lexiscan Pharm Rb Stress

- a. Acquire Stress CT
- b. Administer Lexiscan
- c. Wait 60 seconds, injection Rb82 (25-60 mCi)

d. Immediately begin 6 minute list mode stress acquisition.

Lexiscan-Induced Coronary Blood Flow¹

- Activation of the A_{2A} adenosine receptor by Lexiscan produces coronary vasodilation and increases coronary blood flow (CBF)²
- » Lexiscan causes a rapid increase in CBF that is sustained for a short duration²
- 1. Lieu HD, et al. *J Nucl Cardiol.* 2007;14:514-520.
- 2. Lexiscan (regadenoson) injection [package insert]. Deerfield, IL: Astellas Pharma US, Inc.; 2008.

Dosing and Administration

- Recommended dose of 0.4 mg/5 mL for all patients, regardless of body weight
- Rapid (approximately 10 seconds) IV injection administration
 - No pump required
- ✓ Administration of stress and tracer complete in less than 1 minute

INJECT LEXISCAN (0.4 mg/5 mL IV injection)	
» SALINE FLUS	H
	>> INJECT RADIOTRACER (10-20 seconds after flush)
0	1 minute

۲

*Flush after radionuclide administration per your lab protocol.

The New Lexi/Rb-82 Injection Protocol

•

• • • • • • • • •

When to Inject Radiotracer for MBF after Regadenoson

TIME DEPENDENCE OF MYOCARDIAL BLOOD FLOW RESERVE MEASUREMENTS FOLLOWING REGADENOSON RUBIDIUM-82 MYOCARDIAL PERFUSION PET: NEW DATA SUPPORTING A LONGER INFUSION DELAY

T M Bateman^{*},¹ J A Case,¹ S A Courter,¹ J Jensen,¹ E V Burgett,² S Van Vickle²

¹Cardiovascular Imaging Technologies, Kansas City, MO, ²Saint Luke's Health System, Kansas City, MO Background: Rb-82 infusion is commonly begun 10 seconds following

regadenoson (Reg) injection, similar to SPECT protocols. However,

Conclusion: This study indicates that peak vasodilation after regadenoson injection occurs considerably later than 10 seconds after beginning of Rb-82 infusion. Specifically, delaying the start of the Rb-82 infusion for 60 to 120 seconds following regadenoson injection provides higher peak MBFR measurements. Further studies are needed to determine if a longer delay also improves image accuracy.

Adenosine Pharm Rb Stress

- b. Begin adenosine administration for 7 or 8 minutes (depending on rate selection by NP)
- c. Injection Rb82 (25 60 mCi) at 1.5 min of Adenosine administration or at 2.5 min
- d. Begin a 6 minute list mode stress acquisition at 1.5 min of Adenosine administration or at 2.5 min
- e. Adenosine administration completes at 7 or 8 minutes
- f. Stress Rb acquisition completes at 8.5 or 9.5 minutes

Dipyridamole Pharm Rb Stress

a. Administer Dipyridamole over 4 minutes

b. Wait 3 - 5 minutes, injection Rb82 (25 -60 mCi)

- c. Immediately begin 6 minute list mode stress acquisition.
- d. At end of imaging, begin recovery and administer aminophylline as needed

Dobutamine Pharm Rb Stress

- a. Begin Dobutamine administration
- b. As patient nears 85% of peak heart rate, acquire Stress CT
- c. At peak heart rate administer Rb82 (25 -60 mCi) begin 6 minutes stress acquisition
- d. Maintain Dobutamine administration rate for 2 minutes post peak heart rate
- e. At 2 minutes reduce rate to previous administration rate until end of stress acquisition

Diagnostic Accuracy of Rb-PET MPI

- Spatially-relative image interpretation (visual & quantitative)
- Rest & peak stress LVEF, EDV, ESV
- Rest & peak stress global & regional WM & WT
- Myocardial blood flow (MBF) & coronary flow reserve (CFR)

Cardiac PET MPI Multi-demensional List-Mode Acquisition

Dynamic Cardiac PET

•

Myocardial Perfusion SPECT/PET

56

Rb-PET MPI w/Flow (case #1) MALE Str Flow (ml/g/min) LV/RV Input (kBq/mI) / Time (sec)

Conclusion: Clinical Response Nonischemic **Perfusion** Abnormal (Reversible) **ECG Response** Nonischemic **Function** Abnormal rest, worse after stress These test results indicate a very high (>98%) likelihood for the presence of hemodynamically significant coronary artery disease.

LAD: a large severe reversible defect in the anterior, septal, inferior and apical walls.

The severity of the anterior, septal, inferior and apical perfusion defects suggests that the LAD stenosis is critical (>90%). Patient was transferred to emergency room.

IMPRESSION:

1. Severe native coronary artery disease as described above.

Status post successful percutaneous coronary intervention to the 2... left anterior descending and first diagonal branch.

RECOMMENDATIONS:

54 SAX

Initiate dual antiplatelet therapy as well as statin therapy. The patient is to be observed under the hospital service overnight for postprocedure care.

Limits

TID

LHR

QPET

1.27

Rb-PET MPI w/Flow (case #2)

Sex Limits TID		MALE QPET 0.94				
LHR						
SSS	0	SRS	0	SDS	0	
SS%	0	SR%	0	SD%	0	
Study		PET^1 2	Large	Rest Str	ess w CCS	S (Adult)
Datase	t	DYN16fran				
Date		2018-01-19 10:21:16				
Status		QC=1.34, I	R=0.28	(saved)		
Dcy Co	r	Acquisition	n start	time		
Volume		54ml [4 - 3	0s]			
Shape		0.68 [SI], 0).86 [E	cc]		
Counts						

Conclusion: Clinical Response Nonischemic Perfusion Normal ECG Response Nondiagnostic (RBBB) Function

These test results indicate an intermediate (30-69%) likelihood for the presence of jeopardized myocardium.

- The right ventricle is enlarged and hypertrophied
- Stress flow 1.04 ml/gm/min. Rest flow 1.42 ml/gm/min. The markedly decreased myocardial flow reserve of 0.75 (normal > 2.0) suggests increased risk of cardiac hard events. Cannot rule out triple vessel disease with balanced flow reduction

•

Cardiac Mortality by CFR & Scan Abnl

Tx/Em Registration QC

Dedicated PET System

Tx/Em Registration QC

PET/CT System

Attenuation Correction

Mis-registration Artifacts

- •
- ۲

3D Fusion Registration

After

Before

Infusion System Errors

RMALLY

SETPOINT VALUES:

Elution Vol. = 99 ml Patient Vol. = 50 ml Patient Dose = 35 mCi Dose Rate ThId. = 1.0 mCi/sec Flow Rate = 50 ml/min Cal. Factor = 1232

ACTUAL INFUSION DATA: Elution Vol = 25 ml Patient Vol = 14 mL Patient Dose 35.0 mC

At End Of Infusion = 32.8 mCi

Activity Present Between Det. and Waste Valve = 1.153 mCi in Volume of 0.592 ml

Activity Present Between Waste Valve and Pat. = 2.685 mCi in Volume of 1.250 ml

ACTIVITY PROFILE

Time	Detector	Patient
sec	mCi/sec	mCi/sec
1	0.004	0.000

Vertical Motion

Horizontal Motion

SPECT

Raw Projection 2D Cine

Raw 3D MIP Cine

Slomka et al, J Nucl Cardiolo 2016;23:486-90

•

Series Descripti	on Motion_Stres	ŝS	StudyType
Dynamic			
Frame Defi	nition		
Index	Frames	Time (sec)	Delay
1	0	0	120 📃
2	4	60	0
3 4 5 6 7 8			
4			
5			
7			
8			
9			
10			•
Total D	Juration	360 sec	Clear

Motion Stress

NOTFOR DIAGNOSTIC USE

•

NAC \rightarrow $AC \rightarrow$ AC w/mc \rightarrow AC w/mc 5-6min \rightarrow

Physiologic Artifact CHF & LOW EF

NUMBER OF STREET, STRE

Physiologic Artifact CHF & LOW EF

NAC	Study Dataset Date Status Database Volume Wall Defect Extent TPD Counts	PET^2_Rest_Rubidium (Adult) _Rest_Rb_nac (NAC) 2016-06-01 08:13:02 QC=9.15, IR=0.21 (saved) Rb-PET-Rest-CSMC 481ml 513ml 235ml 46% 34% 798522k,592.2ml
AC	Study Dataset Date Status Database Volume Wall Defect Extent TPD Counts	PET^2_Rest_Rubidium (Adult) _Rest_Rb_AC (AC) 2016-06-01 08:13:02 QC=2.79, IR=0.33 (saved) Rb-PET-Rest-C SMC 179ml 201ml 20ml 10% 10% 3444557k,243.4ml
16mm AC	Study Dataset Date Status Database Volume Wall Defect	PET^2_Rest_Rubidium (Adult) _Rest_Rb_AC_16mm (AC) 2016-06-01 08:13:02 QC=2.79, IR=0.33 (saved) Rb-PET-Rest-C SMC 179mi 201mi 16mi
240 sec 16mm AC	Extent TPD Counts Study Dataset Date Status Database Volume Wall Defect	8% 9% 3407204k,243.4ml PET^2_Rest_Rubidium (Adult) _Rest_RB_AC_240_16mm (AC) 2016-06-01 08:17:02 QC=2.79, IR=0.33 (saved) Rb-PET-Rest-CSMC 179ml 201nl 4ml

Extent

TPD

2%

3%

Physiologic Artifact

Lung Uptake, Ischemic Cardiomyopathy & Low EF

NAMES OF TAXABLE PARTY.

Physiologic Artifact

Lung Uptake, Ischemic Cardiomyopathy & Low EF

07.4ml	
st_Rubidium (Adult)	
ACmc_240_14mm (AC	
08:17:44	
R=0.32 (saved)	
st-CSMC	
,299.9ml	
5_VIABILITY (Adult)	
_ACmc (AC)	
11:32:44	
R=0.21 (saved)	
58.9ml	
1	

PET^2 Rest Rubidium (Adult)

_Rest_RB_nac (NAC)

2016-08-03 08:15:44 QC=4.79. IR=0.37

174ml

265ml

119ml

45%

33%

174ml

265ml

119ml

45%

33%

552291k,30

PET^2 Res

_Rest_RB

2016-08-03

QC=5.76. II

Rb-PET-Re

216ml

251ml

46ml

18%

13%

10926372

PET^4 FDC

_Rest_FDG

2016-08-03

QC=5.32.1

766477k.2

266ml

208ml

7%

7%

552291k,307.4ml

_Rest_RB_nac (NAC)

2016-08-03 08:15:44

QC=4.79, IR=0.37

Rb-PET-Rest-CSMC

PET^2 Rest Rubidium (Adult)

IV Problems

Small IV

PICC Line

Excessive Gut Uptake

ECG Gating Artifact

Rest

Rb-PET MPI Analysis

- Quality:
 - Blood pool activity
 - Lung uptake
- Perfusion defects
 - Location, qualitative (visual) evaluation of severity
 - Semi-quantitative segmental score
- Gated data
 - RV and LV size, relative uptake
 - Volume, EF and regional wall motion
- Dynamic data
 - Rest & peak stress myocardial blood flow and flow reserve
- Extra-cardiac findings and calcium score (CT)

Summary

- Cardiac PET imaging offers unique & robust technique in detecting and risk assessment of CAD in patient who is not able to exercise adequately.
- PET imaging artifacts are different than the SPECT
- Causes include; breathing, patient motion
 - 21% of PET scans (JNM 2004; 45:1029-39)
 - Up to 40% if CTAC (JNM 2007; 48: 1112-1121)
- Solutions;
 - Patient prep & history
 - Software based realign transmission & emission scans
 - Reconstruct partial data (list mode)
 - Repeat study