Value in Monitoring Manual Cleaning of Flexible Endoscopes

Dr. Michelle J. Alfa, Ph.D., FCCM
Medical Director, Clinical Microbiology,
Diagnostic Services of Manitoba, Winnipeg, Canada

St Boniface Research Centre
Winnipeg, Manitoba Canada

Disclosures:

Sponsored to give invited presentations at various National and International conferences by:
STERIS, 3M, J&J, Healthmark, APIC, CACMD, Virox, Medisafe, Ontario Hospital Association, CHICA, and multiple conference associations.

The University of Manitoba has licensed Dr. Alfa’s patent for Artificial Test Soil to Healthmark.

Opinion Leader Panel participation or Consulting Services for: 3M, J&J, STERIS, Serim, Olympus, bioMerieux, Serim, various Canadian Healthcare facilities.

Research projects for:
3M, STERIS, J&J, Novaflux, Virox, Serim, Olympus, Medisafe, Serim, Case Medical, Province of Manitoba, Public Health Agency of Canada

(NOTE: no funds from these research projects come to Dr. Alfa – all funds handled by the St. Boniface Research Centre).
Objectives:

- **Culture of channels to monitor flexible endoscopes**

- **Rapid Cleaning Monitors for flexible endoscopes**
 - ATP to detect organic and microbial residuals
 - Test strips to detect organic residuals

- **Flexible Endoscope cleaning**
 Why is a Quality Systems approach needed?

Pictures from Google Images

What you can’t see...........
Can hurt you!

The outside looks clean, but
........ What lurks within??!
Flexible Endoscope Guidelines: What do they say?

- **Canada:**
 Decontamination of reusable medical devices. CSA guideline Z314.8-13
 Recommends consider rapid monitoring of manual cleaning of endoscopes especially if prolonged in transit.

- **USA:**
 Standards of Infection Control in Reprocessing of Flexible Gastrointestinal endoscopes SGNA 2011.
 Recommends: No cleaning monitoring recommendations.

- **Australia:** [Similar to European Guidelines]
 GENCA/GESA/AGEA Infection Control in Endoscopy (Australia) 2010.
 Recommends: bronchoscope & duodenoscope channels and AER tested for microbial growth monthly. All other scopes tested every 4 months.

Microbe growth in Patient-Ready scopes: Due to Wet Channel

[(Alfa MJ & Sitter D 1991 J Hosp Infect.)](#)

- ~50% of scopes had growth

Drying 10 mins:
- [Manual or AER air purging]
- **No detectable microbes at 2, 24 or 48 Hrs**
 [N=19 scopes]

Scopes tested: 2 Hrs: N=12, 24 Hrs: N=15, 48 Hrs: N=15

Manual Endoscope Reprocessing: What monitors are available?

1. **Culture of Channels post-HLD:**
 - scope used on other patients before results available at ~48Hrs

2. **Rapid Cleaning Monitors:**
 - failed scope gets reprocessed before going to HLD
 - **Organic residues** (protein, hemoglobin, etc)
 - **ATP residues** (human secretions & microbes)
Culture of Endoscope Channels

- **Post-HLD:** expect no viable microbes
- **Sample collection** may introduce contaminants
- **Process indicator:** not fast enough to prevent scope being used again
- **How to interpret results?**

Australian approach:
Colonscope culture positive

- **Skin microbes:** review collection protocol
- **GI Microbes:** > 10 cfu *S.aureus, viridans Streptococci, Enterococcus spp,* or Gram negatives (*E.coli, Pseudomonas sp*) requires action:
 - pull scope from use, test again
 - assess if patient notification is needed

GENCA, GESA, AGA Guideline: Infection Control in Endoscopy 2010

Culture of Endoscope Channels:

- **Gillespie et al 2008:**
 Over 5 years: 2374 scopes tested
 - 6 contamination events
 - 175 low level contamination events
 - No Mycobacteria in bronchoscopes
- **Recommended culture only at installation, annually and following scope/AER repair**

North American Endoscope Culture Data: Patient-ready scopes

1. **Miner et al 2007: N=5**
 Average of 200 cfu in patient-ready GI scopes.

2. **Chiu et al 2010: N=7**
 18% patient-ready GI scopes showed growth

3. **Alfa et al 2012: N=141**
 141 scopes over 7 months: 14% had growth:
 - 13 < 10 cfu/mL
 - 5 >10 but < 100 cfu/mL
 - 2 > 100 cfu/mL

Manual Cleaning Monitors

- Endoscope Channel Sample
- Organic residuals
- ATP: microbes & human secretions
- Carbohydrate, protein, hemoglobin

Tests assess how well the manual cleaning is being done by staff

Validated Sample Collection

1. **Sample Collection:**
 Flush 10 mLs of sterile deionized water from Biopsy port to distal end.

2. **Test sample:**
 organic residues, viable organisms or ATP
Cleaning Monitoring: Endoscope Channels

- **Organic Residuals**
 - Protein
 - Hemoglobin
 - Carbohydrate

 Commercially available rapid test kits from many different manufacturers

Trans-Canada Survey:

Patient-ready flexible endoscopes

Cleaning monitoring of organic residuals in suction/biopsy channel: rapid test strip

<table>
<thead>
<tr>
<th>Instrument</th>
<th>No.</th>
<th>Pos. (%)</th>
<th>Carbohydrate</th>
<th>Protein</th>
<th>Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastroscope</td>
<td>543</td>
<td>50 (9.2%)</td>
<td>0</td>
<td>3</td>
<td>47</td>
</tr>
<tr>
<td>Colonoscope</td>
<td>463</td>
<td>32 (6.9%)</td>
<td>5</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Bronchoscope</td>
<td>251</td>
<td>10 (4%)</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>ERCP scope</td>
<td>57</td>
<td>7 (12.3%)</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>[Elevator guide wire channel]</td>
<td>21</td>
<td>4 (18.1%)</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Sigmoidoscope</td>
<td>91</td>
<td>2 (2.2%)</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Cleaning Monitoring: Endoscope Channels

- **ATP**
 - Relative light units [RLUs]

 - **Bacteria:** requires ~ 1000 bacteria to give 1 RLU
 - Not sensitive enough to replace culture to detect bacteria
 - **Human secretions** have high ATP levels

 Commercially available rapid test kits from many different manufacturers
RECOMMENDATIONS FOR ATP MONITORING:
Gastrointestinal Endoscopes

Post cleaning: Monitor endoscope channels to assure adequacy of cleaning

Post HLD: Monitor endoscope distal tip
(high ATP post-HLD may be due to organic residuals – so more data needed)

Clinical Study: ATP to monitor manual cleaning of endoscope channels

Validated cut-off for adequate cleaning of: ≤ 200 RLUs

Colonoscopes Post manual cleaning (N = 20):
- Suction/Biopsy channel: 0% > 200 RLUs
- Air/Water channel: 0% > 200 RLUs
- Auxiliary water channel: 0% > 200 RLUs

Duodenoscopes Post manual cleaning (N = 20):
- Suction/Biopsy channel: 0% > 200 RLUs
- Air/Water channel: 0% > 200 RLUs
- Elevator GW channel: 25% > 200 RLUs
(all < 700 RLUs)

Stop Dirty Endoscopes at the Cleaning stage!!

- Once disinfected or sterilized residues are fixed → hard to extract and analyze

- Need to do routine monitoring of cleaning to prevent build up of fixed material in endoscope channels.

Azizi J, Basile RJ The need to verify the cleaning process. Horizons, Spring 2012 page 48-54.

The Future is going to be even more complex!!

Natural Oriface translumenal Endoscopic Surgery (NOTES)

Access to peritoneal or thoracic space through incision in; stomach, vagina, rectum, oesophagus

Santos BF, Hungness ES World J Gastroenterol 2011 DOI: http://dx.doi.org/10.3748/v17.31.1655

Rapid Cleaning Monitors will help prevent errors up to this stage

All 12 steps completed: Manual cleaning & AER for HLD: 1.7% Automated cleaning and HLD: 75.4%

<table>
<thead>
<tr>
<th>Observed Activity</th>
<th>Steps completed (%) (in 90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean and perform initial stages</td>
<td>77</td>
</tr>
<tr>
<td>Disassemble endoscope</td>
<td>100</td>
</tr>
<tr>
<td>Clean all components</td>
<td>99</td>
</tr>
<tr>
<td>Remove all instruments</td>
<td>99</td>
</tr>
<tr>
<td>Disassemble accessories</td>
<td>99</td>
</tr>
<tr>
<td>Flush endoscope with detergent</td>
<td>99</td>
</tr>
<tr>
<td>Rinse endoscope with water</td>
<td>99</td>
</tr>
<tr>
<td>Purge endoscope with air</td>
<td>99</td>
</tr>
<tr>
<td>Clean and assemble endoscope</td>
<td>99</td>
</tr>
<tr>
<td>Flush endoscope with alcohol</td>
<td>99</td>
</tr>
<tr>
<td>Use vacuum air to dry</td>
<td>99</td>
</tr>
<tr>
<td>Wipe down external surfaces</td>
<td>99</td>
</tr>
</tbody>
</table>

TABLE 3: Documented Completion of Steps During Manual Cleaning With High-Level Disinfection Reprocessing
Cleaning Monitors: Quality System Program

- Ensure Staff competency for Manual cleaning:
 - initial training verification,
 - updated for new scopes/instruments
 - yearly competency assessment
- Ensure ongoing adequacy of manual cleaning:
 - monitor flexible endoscope lumens

Paradigm Shift: Medical Device Cleaning....

Quality System Process:
1. Validated Manufacturer's cleaning instructions
2. Staff training & appropriate cleaning equipment
3. Cleaning monitoring
4. HLD and Sterilization monitoring

Summary:
- Culture of channels to monitor flexible endoscopes
 - Needed to investigate outbreaks
 - Results take too long for routine monitoring; contaminated scope could still used on next patient
- Rapid Cleaning Monitors for flexible endoscopes
 - ATP to detect organic and microbial residuals
 - Test strips to detect organic residuals
- Quality System for Flexible Endoscope cleaning:
 - Ensures unclean scope is reprocessed before used on next patient

Pictures from Google Images
Flexible Endoscope Reprocessing

Pictures from Google Images

References

- Provincial Infectious Diseases Advisory Committee (PIDAC) – MOHLTC Best Practice Practices for Cleaning, Disinfection and Sterilization – In all Health Care Settings (April 30, 2006)
- Hubner N. Endowasher: an overlooked risk of post-endoscopic infection. GMS Krankenhaushygiene Interdisziplinair 2011;6, ISSN 1863-5245

- AAMI TIR12:2004 Designing, testing, and labeling reusable medical devices for reprocessing in health care facilities: A guide for medical device manufacturers. 2nd
- ANSI/AAMI ST19:2004 Sterilization of medical devices—Information to be provided by the manufacturer for the processing of resterilizable medical devices
- AAMI TIR23:2011 A compendium of processes, materials, test methods, and acceptance criteria for cleaning reusable medical devices