

Vulnerability – The top level performance indicator for bridges exposed to flooding hazards

Nikola Tanasic, Ph.D. Civ. Eng.

Assistant prof. at Faculty of Civil Engineering, University of Belgrade, Serbia **Rade Hajdin**, Ph.D. Civ. Eng.

President Infrastructure Management Consultants, Zürich, Switzerland Professor at Faculty of Civil Engineering, University of Belgrade, Serbia e-Mails: nikola@imk.grf.bg.ac.rs; rade.hajdin@imc-ch.com

Vulnerability – The top level performance indicator for bridges exposed to flooding hazards

- 1. Introduction
- 2. Performance indicators related to flooding in Europe
- 3. Vulnerability of bridges to flooding events
- 4. Methodologies for quantitative risk/vulnerability assessment
- 5. Structuring of adequate quality control plans
- 6. Conclusion

Introduction - extreme flooding events around the world

FRNATIONAL

MANAGEMENT CONFERI

- Japan, 1998 intensive rainfall road infrastructures damaged at 645 locations
 14 bridge failures
- South Korea, 2003 typhoon Maemi
 27 bridges and 774 roads impaired
- Taiwan, 2009 typhoon Morakot
 52 bridges devastated

Introduction – recent bridge failures

- Hintze Riberto bridge, Portugal, 2001
- Northside bridge, UK, 2009
- St. Adolph bridge, Canada, 2009
- Bridge over Filos river, Turkey, 2012
- Bridge across Rambla de Bejar, Spain, 2012
- Boneybrook bridge, **Canada, 2013**
- Two bridges in Sardinia, Italy, 2013

RNATIONAL

MANAGEMENT CONFE

Introduction – recent flooding in Serbia

- May 14 18, 2014 / Extreme flooding event: South-east Europe floods caused by cyclone Tamara
- 1.6 mil. people directly affected; Damage estimated 1.0 bil. \$

Introduction – recent flooding in Serbia

- Torrential flooding + flood level 16ft above the ground level at several urban areas = 59 fatalities, tens of thousands evacuated.
- ~ 2.200 public industrial and infrastructure facilities were flooded, (incl. the coal mine site "Kolubara")

Introduction – recent flooding in Serbia

- Severe damage to the transportation infrastructure:
 ~3500 roads damaged/destroyed; ~1800 at risk landslides!
- ~ 300 bridges affected
 The two main causes of bridge failures:
 - ✓ Washing away of access roads
 - ✓ Local scour

Introduction – more flooding...

4 bridges collapse in Waco, Texas, USA ~ June 1. 2016

...road will remain closed until the county bridge is repaired, and there is no prediction as to when that might be. (wacotrib.com)

Introduction – scour assessment in bridge management practice

- Long Term Bridge Performance Program
 - ✓ **Reliable identification** of scour susceptible bridges is necessary !
- FHWA
 - ✓ **NBI Item 113 –** Scour vulnerable bridges
- NYSDOT
 - ✓ Hydraulic Vulnerability Manual
- NCHRP 590
 - ✓ Scour vulnerability & multi-criteria optimization in decision making
- Software ?
 - ✓ HAZUS-MH (USA), Road Risk (Switzerland), CAESAR (USA)
- European research project COST TU1406
 - ✓ Structuring of QC plans for roadway bridges
 - ✓ Dynamics and uncertainty of non-interceptable (sudden) events

Performance indicators for flooding hazards in Europe

• COST TU1406 survey for bridge performance indicators

Flood/Scour in European guidelines

Performance indicators for flooding hazards in Europe

Reported terms on scour:

- <u>Visual Inspection</u> exposed foundation, eroded embankment...
 - Possible failure scenario revealed not reliable
 - Prioritization for monitoring/measuring of scour not reliable
 - Ineffective against flash flooding!
- <u>Measurements</u> scour depth and scour affected area
 - ✓ Scour cavity infill?
 - ✓ Cost and adequacy?
 - Ineffective against flash flooding!
- Indirect evaluation hydraulic adequacy, scour eval. formulas...
 - ✓ Appropriateness of the applied formulas ?
 - Overestimation of a scour depth ?

Vulnerability of bridges to flooding events

Risk of failure

Qualitative approaches (e.g. Likelihood & Consequences Matrix)

Conditional

probability of failure

- Included only in several BMS !
- Easy ranking?
- How to evaluate:
 - ✓ *Likelihood* of an Event?
 - ✓ Consequences ?

 $P_f = P_s (P_n)^s$

- Thresholds ?
- Probability of the Event f = Hazard Magnitude s & Failure mode n

Vulnerability of bridges to flooding events

Vulnerability is more convenient to use

$$V_n^s = P_n^s (DC_n + IC_n)$$

- Related to a given hazard magnitude **s** (e.g. 100-year flood)
- Scenario assumed (e.g. local scour at a pier or abutment)
- Failure mode *n* (e.g. combined soil-bridge kinematic mechanism)
 - ✓ Resistance of the infrastructure is accounted !
- Total related consequences are monetized (direct and indirect)

Vulnerability of bridges to flooding events

Key data for hazards: Exposure, Resistance, Consequences

- **Exposure** (hazard scenario)
 - ✓ Flooding magnitude and duration (i.e. hydrograph)
 - ✓ Water channel geometry & properties
 - Piers & abutments location, geometry and alignment in respect to a water flow
- **<u>Resistance</u>** (failure modes)
 - Properties of a soil at foundations (geotechnics and erodibility)
 - Type & detailing of the substructure and superstructure
 - ✓ Location and severity of damage on relevant bridge elements
- **Consequences** (inadequate bridge performance)
 - ✓ Costs of repairs or replacement, down time
 - Network & traffic data to account indirect costs of failure e.g. vehicle operating costs, accident costs, travel time, etc.

Methodologies for quantitative vulnerability assessment

• HYRISK Quantitative approach (bridges with unknown foundations)

Data	PI: Risk of scour failure	
Exposure	NBI Items	
Resistance	Adjustment factors for types of foundation and span Probability of failure – NBI items uncomprehensive !	
Consequences	Traffic volume	Failure type not considered !

- Predefined Minimum Performance Levels
- **QC plans -** thresholds for foundation survey, countermeasures, automated monitoring

Methodologies for quantitative vulnerability assessment

- Conditional probability of a bridge failure
 - ✓ Flooding magnitudes and related local scour action
 - ✓ Combined soil-bridge failure modes

Local scour at the abutment

Structuring of adequate quality control plans

Key bridge elements for different types of resistance to local scour at a substructure

Bridge element	Attention	Resistance	Failure mode type
Affected substructure foundation	Inadequate detailing/condition state	Structure governed	1
Bearing/joint at the top of the affected substructure	Low plastic strength of a bearing/joint (or a poor condition state)	Governed by soil properties i.e no/low superstructure resistance	2
Bearings/joints at other substructures	Horizontal displacement is either free or restrained	Combined soil-bridge resistance	3
Main girder	Detailing	Combined soil-bridge resistance	3
		Failure safe	4

Structuring of adequate quality control plans

• FM Type 1 – progressive collapse due to inadequate detailing

Structuring of adequate quality control plans

• FM Type 3 – combined soil-bridge resistance

INTERNATIONAL

Structuring of adequate quality control plans

• FM Type 4

• Or is this FM Type 2 ?

Missing pier !

Conclusion

- Structuring of an adequate control plan for each bridge type
- Minimum set of information !
- Performance Indicator = Vulnerability
- Preventative interventions
 - ✓ Decrease an exposure to a scenario
 - ✓ Monitoring of scour at substructures
 - ✓ Increase of a structure resistance
 - Bridges with potential for **FM** type **1 & 2**

Acknowledgment

 COST TU1406 Research Project: Quality specifications for roadway bridges, standardization at a European level

Thank you for the attention !

