Tenofovir-induced osteomalacia

Brittany Knezevic, David Nolan

Department of Immunology, Royal Perth Hospital, Perth, Western Australia

1. INTRODUCTION

Royal Perth

Hospital

Tenofovir (TDF), a nucleotide reverse transcriptase inhibitor, is widely used in the backbone of combined HIV antiretroviral therapy. Fanconi's syndrome is a defect in proximal tubule function causing hypophosphatemia and osteomalacia, which can be caused by tenofovir therapy. We report a rare case of this complication.

3. HISTORY OF PRESENTING COMPLAINT

The patient reported a 12 month history of gradually progressive pain in her pelvis, proximal limbs, lower back and ribs that had become severely disabling, such that she was largely bed-bound and wheelchair dependent.

Following a normal MRI spine, a provisional diagnosis of "peripheral neuropathy" had been made in Zimbabwe.

2. CASE RECORD

A 48 year old Zimbabwean woman, visiting her daughter in Perth WA, presented wheelchair-bound with incapacitating pelvic and lower limb pain. Past Medical History (figure 2):

- HIV infection diagnosed 2000, managed in Zimbabwe
 Drug resistance with extensive anitretroviral treatment (ART) history (Figure 2)
 Recent CD4 287 (16%) with virological suppression and 100% compliance
- 2. Uncharacterised biliopathy with portal hypertension: normal liver USS (2015) New onset jaundice (2016)

Examination:

- Cognitive slowing; reduced BMI
- Jaundice; no peripheral signs of chronic liver disease
- Generalized bony tenderness; mild quadriceps muscle wasting
- Reduced proximal power due to severe pain
- Preserved reflexes, coordination and sensation
- Moderate splenomegaly; systems exam otherwise unremarkable

Figure 1: Areas of tenderness

4. INVESTIGATIONS

Laboratory findings revealed severe hypophosphatemia, hypouricemia, acidosis, proteinuria and raised alkaline phosphatase. A bone scan (Figure 4) revealed multiple insufficiency fractures in the axial spine and proximal long bones.

Patient bloods: March '16		Reference range
Haemoglobin	124	115-160 g/L
White cell count	4.82	4-11 x 10 ⁹ /L
Platelets	58	150-400 x 10 ⁹ /L
Sodium	140	135-145 mmol/L
Potassium	3.9	3.5-5.2 mmol/L
Bicarbonate	17	22-32 mmol/L
Creatinine	83	45-90 umol/L
Bilirubin	56	<20 umol/L
ALT	34	<35 U/L
Alk phos	460	30-110 U/L
GGT	100	<40 U/L
Albumin	38	35-50 g/L
INR	1.2	0.9-1.3
Calcium	2.23	2.1-2.6 mmol/L
Phosphate	0.39	0.75-1.5 mmol/L
PTH	2.1	1.6-6.9 pmol/L
Vitamin D	121	>50 nmol/L
СК	45	30-170 U/L
Urine P:Cr ratio	139	<13 mg/mmol
HLA B57 typing	HLA B*5701 is ABSENT	
Schistosoma serology	POSITIVE: past or recent Schistosoma infection	

Figure 3: Normal pelvic x-ray

Figure 4a: 99mTc scan: pelvic, femoral microfractures

5. DIAGNOSES & MANAGEMENT

Investigations confirmed suspected diagnoses of:

- 1. Tenofovir-induced osteomalacia
- 2. Non-cirrhotic portal hypertension likely associated with past didanosine exposure and/or schistosomiasis
- 3. Hyperbilirubinemia secondary to atazanavir
- Tenofovir was discontinued
- Following HLA typing, abacavir / lamivudine / dolutegravir was commenced
- Praziquantel treatment was provided for schistosomiasis
- Pain and mobility improved significantly over the subsequent two months
- The patient was able to mobilise independently by the end of her visit to Perth

6. CONCLUSIONS

This case of tenofovir-induced Fanconi's syndrome with osteomalacia, highlights:

- **1.** The importance of surveillance and early recognition of Fanconi's syndrome
- 2. The wide range of iatrogenic complications that can arise from past ART
- 3. The complexities of HIV management in short-term visitors to Australia
- Fanconi's syndrome is characterised by proximal tubule renal dysfunction
- Major features: hypophosphatemia, hypokalemia, glycosuria, hypouricemia, proteinuria and non-anion gap metabolic acidosis ¹
- Severe hypophosphatemia (<0.65 mmol/L) leads to impaired bone mineralisation (osteomalacia), cognitive slowing and myopathy ¹
- Current guidelines recommend monitoring patients on tenofovir (TDF) by checking creatinine, phosphate, urine glucose & protein:creatinine ratio 3 monthly for 1st year of therapy, then 6-12 monthly thereafter ²
- New formulations of tenofovir alafenamide (TAF) are significantly less likely to cause Fanconi's syndrome due to reduced off-target (e.g. renal) drug exposure ³
- 1. Mateo L, Holgado S, Marinoso M et al. Hypophosphatemic osteomalacia induced by tenofovir in HIV-infected patients. Clinical Rheumatology. 2016, 35:1271-1279.
- 2. Holt S, Gracey D, Levy M et al. A consensus statement on the renal monitoring of Australian patients receiving tenofovir based antiviral therapy for HIV/HBV infection. AIDS Research and Therapy. 2014, 11:35.
- 3. Ray A, Fordyce M, Hitchcock M. Tenofovir alafenamide: a novel prodrug of tenofovir for the treatment of Human Immunodeficiency Virus. Antiviral Research. 2016, 125:63-70.