

Implementation of Road Structure Management System KUBA – Experience Report

Jan Wunderlich & Prof. Dr. Rade Hajdin

Outline

- Introduction
- Estimation of deterioration matrices
- Collection of data on performed maintenance interventions
- Inspection workload
- Conclusions

Swiss NHS

- 12,500 road structures, which include 4,300 Bridges and 220 tunnels
- Visual inspections each 5 years
- Inspection practice: Condition state assessment for
 - Structure
 - Elements
- Segments/Damage areas → deterioration process
- Approx. 3 million US\$ yearly for inspections

Road Structures Management System (RSMS) KUBA

RSMS KUBA

Markov chains / decision process for:

- Modelling deterioration
- Forecast of financial needs
- Work programs

Determination of deterioration functions, effectiveness and costs of interventions:

- Pool of experts
- Updating based on collected data

Experience report

- Estimation of deterioration matrices
 - Data in bad condition states
 - Issues related to calibration using raw data
- Data on performed maintenance interventions
 - Organizational issues
 - Technical issues
- Inspection workload
 - Analysis of scatter and distribution of the workload in function of different properties

Corrosion of reinforcement

Average exposition

Expansion joints

Average exposition

	Observed number of transition						
		CS2		CS4	CS5		
CS1	1,071	843	493	70	1		
CS2	0	104	52	2	0		
CS3	0	0	89	6	0		
CS4	0	0	0	2	0		
CS5	0	0	0	0	ο		

Calibration using raw data

	Transi	Transition probability at t+5years						
	CS1	CS2	CS3	CS4	CS5			
CS1	0.947	0.053	-	-	-)			
CS2	-	0.926	0.074	-	-			
CS3	-	-	0.968	0.032	-			
CS4	-	-	-	0.986	0.014			
CS5	[-	-	-	-	1.000			

	Transition probability at t+5years						
	CS1	CS2	CS3	CS4	CS5		
CS1	0.927	0.073	-	-	-]		
CS2	-	0.848	0.152	-	-		
CS3	-	-	0.946	0.054	-		
CS4	-	-	-	0.993	0.007		
CS5	-	-	-	-	1.000		
	C)		

Conclusions

- FEDRO seldom allows structures and elements to deteriorate into the worst two condition states
 → Almost no data in bad condition states
- Calibration algorithms can overcome data voids but not the problem of almost no data in bad condition states
- The deterioration function from the worst two condition states rely on the estimates made by a pool of experts
- Condition data should be stored immediately before performing intervention

Organizational issues

- Spilt in responsibilities between the asset management (AM) and construction management (CM)
 → AM has no direct managerial authority towards CM
- Resources of AM are inferior to those of CM

 → Organizational weight of CM is larger than the one of AM
 → Concerns of AM treated as less important
- Priority of CM: design, building supervision and partially to asbuilt documentation
 → CM doesn't see necessity of data collection
- FEDRO contracts out most of the maintenance and inspection activities
 - \rightarrow Strict controlling of the task execution are required
- FEDRO's organization is relatively young

 → Awareness for the importance of data collection is not
 completely established.

Possible remedies

- Give AM direct managerial authority over CM
- Give AM the competence for acceptance of work and release funds for the as-built documentation of performed maintenance interventions
- Raising awareness of CM of the need for data on maintenance interventions and related advantages

Technical issues

- Breakdown of cost in practice is different from the cost breakdown in KUBA
- Element related unit costs are needed and these costs have to be stored, but in practice – during project realization – the costs relate to the type of work
- Results of research project: In order to obtain these costs, the contractor has to track them and the awarding authority has to pay for it.

Conclusions

- Spilt in responsibilities between the AM and CM seems to pose an obstacle to obtain data that can be used for planning purposes
- Give the AM the competence for acceptance of work and release funds for the as-built documentation of performed maintenance interventions
- Conduct additional research in order to overcome the issues related to the difference between the breakdown of cost in construction practice from the one in KUBA

11-

Results for bridges

Conclusions

- Type of road structure, number of newly collected damages and the condition state seems to govern the workload
- For bridges, the newly collected damages clearly seem to govern the workload.
- Information about the condition state and the newly collected damages isn't available a-priori
 → It can be therefore used only for controlling the filed workload and not for planning purposes.
- For planning purposes the number of elements can be used, but they don't provide accurate values for large bridges
- Workload heavily depends on the collected data
 → be aware of the data which is required to be collected
- Improvements in the processes and tools are most effective if done for data on damages or groups of damages