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Highly correlated at the local level! 



How does the visual system deal with these problems? 

Large amount of information (and related energy cost) 
 
Efficient coding (redundancy in natural images, finite capacity) 
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Image compression 

Energy efficient 
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Wässle et al., 1981 
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Adapted from Felleman & Van Essen, 1991 
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How the thalamus changes the retinal output 

? 







? 

Retinothalamic model 



Retinothalamic model 

Martinez et al 2014. Neuron 81:943-956.  





Statistical wiring of thalamic receptive fields 



Functional consequences of the thalamic relay 
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Functional consequences of the thalamic relay 

How different are the receptive fields of neighboring LGN relay cells? 

 Diversity index 
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Functional consequences of the thalamic relay 



Functional consequences of the thalamic relay 

Coverage index 
How homogeneously do LGN relay cells cover visual space?  
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Functional consequences of the thalamic relay 



In short, we assume the response of each neuron follows a Gaussian 
distribution centered on a point of the space:   
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where x is small localized point stimulus, with ),0(  N  being some sensor 
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i exf  the ideal response of the i-th neuron. We also 

assume that the sensor noise is additive and independent in each channel. 
Given a response pattern y, the decoder determines the stimulus x which 
maximizes the posterior distribution: 

 

 

With Gaussian sensor noise, the conditional probability of a neural response is: 
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Since the responses of individual neurons are conditionally independent we 

have:  
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By virtue of Bayes theorem, we can now write the maximization of the posterior 

probability as: 
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Note, p(y) acts only as a normalization constant as it is independent on the 

stimulus. Thus, the previous equation simplifies to: 
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If we finally assume a uniform or flat prior distribution (i.e., make no prior 

assumptions about the location of the stimulus), we have to solve the following 

maximization problem: 
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BAYESIAN DECODER 
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With Gaussian sensor noise, the conditional probability of a neural response is: 
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BAYESIAN DECODER 



Statistical wiring of thalamic RFs increases visual (interpolated) resolution  

Martinez et al 2014. Neuron 81:943-956.  
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Statistical wiring of thalamic RFs increases visual (interpolated) resolution  

Energy and coding efficient 



Increasing visual acuity through RF interpolation 



Increasing visual acuity through RF interpolation 



ON-center relay cell OFF-center interneuron 

LGN Receptive Fields. Push-pull inhibition 

ON_RF(x,y) =  



LGN relay cells and interneurons form functional PUSH-PULL “pairs” 
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Increase in dynamic range 
of visual responses 

LGN relay cells and interneurons form functional PUSH-PULL “pairs” 

ON_RF(x,y) =  
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Functional consequences of Push-Pull in the LGN 

ON_RF(x,y) =  

A B 
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Histogram equalization by retinothalamic circuits 



1. Increases visual resolution through interpolation. 
 

2. Decreases local redundancy in the image. 
 

3. Increases the dynamic range of the image (i.e. “flatens” its histogram) 
 

4. Produces a very good local contrast enhancement performance 
 (without halos or visual artifacts) 

 
5. Explains other visual perception phenomena  

simultaneous contrast 

Statistical wiring of thalamic receptive fields 
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Ferreiroa et al 2014. In preparation  
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Molano-Mazón, Alonso-Pablos et al 2014. Submitted  

PUSH-PULL “functional units” 



1. Increase the dynamic range of the image (i.e. “flatens” its histogram) 
 
 

2. Have a very good local contrast enhancement performance 
(without halos or visual artifacts) 
 

 
3. Explain visual perception phenomena  

simultaneous contrast 
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Mach Bands 

PUSH-PULL “functional units” 



1. Increase the dynamic range of the image (i.e. “flatens” its histogram) 
 
 

2. Have a very good local contrast enhancement performance 
(without halos or visual artifacts) 
 

 
3. Explain visual perception phenomena  

Mach Bands 

PUSH-PULL “functional units” 

El Greco. Christ carrying the cross 
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