

Disclosures

I have no financial or industry disclosures

Background

- $^{\circ}$ CT is the most common bacterial STI worldwide (~2 million cases annually in the US)
- Use of long-acting reversible contraception (particularly IUDs) is increasing among women in the US and worldwide
- Despite the increase in LARC use among women the IUD continues to suffer from historical misconceptions
- Using our established model of CT infection in the baboon makes studying this association prospectively possible

Study Design

LNG-IUS is associated with prolonged endocervical CT infection

Group	LNG-IUS	No LNG-IUS	P
NAAT post-inoculation CT clearance (weeks)	10 (7-12)	3 (0-12)	0.06
Culture post-inoculation CT clearance (weeks)	9 (3-12)	1.5 (0-10)	0.04

Why is the LNG-IUS associated with prolonged CT infection?

- Alterations in...
 - Vaginal commensal bacteria that contribute to host immunity

LNG-IUS: Baboon 3893 75 Genera Trockocker Protections of Conceptomonae Conceptomonae Functions of Conceptomo

Study Question

Does the vaginal microbiome impact *Chlamydia trachomatis* in a baboon model?

LNG-IUS does not alter vaginal microbial diversity

	Shannon diversity index (median)	Observed OTUs
Baseline (pre-IUD)	3.04	54
Post-IUD	2.91	58

LNG-IUS associated with stabilization of vaginal microbial communities

CT infection does not persistently alter vaginal microbial diversity

	Shannon diversity index (median)	Observed OTUs
Baseline (pre-CT)	2.64	49
Port-CT	2.55	54

CT does not alter community stability

CT in presence of LNG-IUS

	Shannon diversity index (median)	Observed OTUs
Baseline (IUD+/CT-)	3.02	61.5
Post-CT and IUD	2.88	52

CT in presence of LNG-IUS

Conclusion

- Low rate of PID in both groups
- Lower tract clearance of CT was delayed in the IUD group as compared to no-IUD group
- LNG-IUS is associated with prolonged endocervical CT infection but altered colonization dynamics are not explained by changes in vaginal microbiota.

Conclusion

- Why is the LNG-IUS associated with prolonged CT infection?
- Alterations in...
 - Humoral or cell-mediated immunological responses due to exogenous progestin
 - Cervical mucous volume, thickness, or glycosylation
 - Vaginal commensal bacteria that contribute to host immunity

Acknowledgments

University of Michigan

Christine Bassis, Danny Sack, Mari Couasnon, Vince Young, Anna Cook, Scott McClellan, Emily Chen, Diane Wang

University of Washington

- Dorothy Patton

- David Aronoff

Institute of Primate ReseavanderBILT

- Daniel Chai, George Omondi, Atunga Nyachieo, Nicholas Kiulia, all of the animal staff members

Funding

- NIH WRHR K12 HD06505
- UM Dept. of OB/GYN

Hot off the press

Pathogens and Disease Advance Access published September 13, 2015

 $\label{thm:continuous} \textbf{Title:} \ \ \textbf{The levonorgestrel-releasing intrauterine system is associated with delayed endocervical clearance of \textit{Chlamydia trachomatis} \ \ \textbf{without alterations in vaginal microbiota}$

 $\textbf{Authors:} \ Liechty \ ER^1, Bergin \ IL^1, Bassis \ CM^2, Chai \ D^3, LeBar \ W^4, Young \ VB^{2.5}, Bell \ JD^6$