Intravenous Fat Emulsion

Jeffery W. Spray, PharmD, MHA, BCPS
Clinical Pharmacy Specialist – Critical Care
Winchester Medical Center- Valley Health
Winchester VA

Objectives

• List indications for the use of IVFE
• Identify the risks and benefits of IVFE preparations

What is IV Fat Emulsion

• Mixture of long chain fatty acids
 – Omega 6, 3, and 9 fatty acids
 – Alpha Linoleic Acid makes up small percentage
 – Small amount of Vitamin E to reduce oxidative stress
• Designed to prevent fatty acid deficiency in patients on long term parenteral nutrition
• Source of energy/calories for patients on parenteral nutrition
• Huge breakthrough for parenteral nutrition

Formulations - US

• First product came to market in 1961
 – Original product was Safflower Oil
 • ~77% Omega 6 fatty acids, lacked alpha linoleic acid
• Soybean Oil Based Products
 – Intralipid
 – Liposyn III
• In the US it is mostly derived from soybean oil
 – Mostly Omega 6 Fatty Acids (50% of fatty acid profile)
 – Omega 3 and Omega 9 Fatty acids make up additional profile
 (25% each)
 • 7:1 ratio Omega 6 to Omega 3 Fatty Acids
• Soybean Oil and Olive Oil
 – Clinolipid
 • FDA approved in October 2013

Formulations - International

• Soybean Oil
• Soybean Oil/MCT Oil (50:50)
• Soybean Oil/Olive Oil (20:80)
• Soybean Oil/MCT Oil/Fish Oil (40:50:10)
• Soybean Oil/MCT Oil/Olive Oil/Fish Oil (30:30:25:15)
• Fish Oil

Omega 3 and Omega 6 Fatty Acids
Inflammatory Cascade

USP (United States Pharmacopeia) Standards

- Mean droplet diameter for lipid injectable emulsions must be <500 nm or 0.5 µm, irrespective of the concentration.
- Large globule content:
 - The volume-weighted, large-diameter fat globule limits of the dispersed phase, for a given lipid injectable emulsion must not exceed 0.05%.
- 0.05% is max limit in order to prevent embolic events.

IV stability

- Increased risk of loss of emulsion with 3-in-1 parenteral nutrition mixtures
 - i.e. Cracking emulsion
- Current Soybean oils are mostly long chain fatty acids (Omega 6 Fatty Acids)
- Mixtures of Medium Chain and Long Chain fatty acids offer great stability and less likely to “crack” the emulsion.
Uses

- **Parenteral Nutrition**
 - Can be administered separately (2 in 1)
 - Can be combined with dextrose and amino acid (3-in-1 or TNA)
 - Usual dose 20-30% of non-protein calories
 - Limit of 1-1.5 g/kg/day on day 1 of therapy
 - Provide needed fatty acids to prevent deficiency
 - Provide dense source of energy to limit amount of dextrose and volume that must be given

Parenteral Nutrition – Pediatric/Neonates

- Initial Dose – 1-2 g/kg/day
 - Increase by 0.5-1 g/kg/day to max of 3 g/kg/day
- Caution regarding excessive rates of infusion in Neonates
 - Low rates of clearance
 - Can have intravascular accumulation in lungs

Uses - LAST

- **Local Anesthetic Systemic Toxicity (LAST)**
 - Background
 - Occurs when local anesthetic is introduced systemically
 - Either via accidental vascular administration OR via delayed tissue depot absorption
 - Peripheral nerve blocks carry highest risk → 0.075 to 0.1% of procedures
WHAT IS LIPID RESCUE?

- Proposed antidote for severe LAST
- Administration of IV lipid emulsion in the event of cardiovascular collapse
- Mechanism of action
 - Not completely understood
 - Most widely accepted:
 - The “Lipid Sink”; its emulsion creates an expanded lipid phase which draws toxic drug from tissue into the lipid phase
 - Other theory:
 - Counteracts local anesthetic inhibition of myocardial fatty acid oxidation
 - Current recommendations based on a handful of case reports and animal studies

When To Use Lipid Rescue?

- Still an area of debate
- Not recommended at the first signs of LAST
 - ASA Newsletter: can prevent progression in many cases with supportive care
 - i.e. 100% O2, treatment of convulsions, etc.
- Not recommended to wait for complete cardiovascular collapse
- Base use on clinical severity and rate of progression of LAST

Use In Non-Anesthetic Overdoses

- Case reports of successful resuscitations:
 - Beta blockers (propranolol)
 - Calcium channel blockers (verapamil)
 - Parasiticides
 - Herbicides
 - Psychotropic agents
 - Tricyclic antidepressants, bupropion, lamotrigine, haloperidol
- Primary MOA: “lipid sink”
- These are lipophilic agents that have similar sodium channel blocking properties to local anesthetics
- No guidelines for use in non-anesthetic overdose exist

Journal of Medical Toxicology 2009. 4(3): 184-91
Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 2010. 18: 51-8
www.lipidrescue.org
Administration - Nutrition

- **Hang Time**
 - 3in1 infusions can be hung for 24 hours once mixed
 - 2in1 or when the fat emulsion is infused separately, the fat emulsion should only hang for 12 hours
 - Risk of Malassezia furfur
- **Set Changes**
 - Replace tubing used to administer fat emulsions (those combined with amino acids and glucose in a 3-in-1 admixture or infused separately) within 24 hours of initiating the infusion
 - If admin via separate infusion
 - Hang higher than other infusions due to low specific gravity

Administration - Nutrition

- **Filter**
 - Clinolipid and Intralipid
 - Use filter 1.2 or larger
 - Liposyn
 - No filter needed
 - Nutrilipid
 - Use 1.2 micron filter
 - Avoid admin in DHEP containing IV sets
- **3-in-1 solutions can obscure signs of precipitation**
 - Care must be taken to ensure Ca and Phos concentrations are within acceptable ranges

Administration – Lipid Rescue

- **Bolus dose:**
 - 1.5mL/kg over 1 minute followed by continuous infusion
 - Repeat bolus dose every 5 minutes up to 3mL/kg total dose until adequate circulation is restore
 - Maximum of 2 repeat boluses is permitted
- **Continuous Infusion**
 - 0.25mL/kg/min for 30-60 minutes
 - May increase rate to 0.5mL/kg/min if blood pressure declines
 - Maximum total dose: 10mL/kg is recommended

www.lipidrescue.org
Monitoring

• Initial infusion
 – Allergic reaction (dyspnea, cyanosis, fever)
 – Derived from egg phospholipids so some contraindicated with egg allergy
• Serum Triglycerides
 – High doses are associated with elevated triglycerides, possibly due to saturation of elimination mechanism
 – S/Sx’s pancreatitis
• LFTs, Bilirubin
 – hepatobiliary disorders are associated with PN therapy: steatosis, cholestasis, and gallbladder sludge/stones

Questions/Discussion

• How many of you have used lipid emulsion for anesthetic toxicity?
• How many of you have used lipid emulsion for drug overdoses?
• How many of our institutions limit use of fat emulsions due to potential for inflammatory and oxidative stress?