IPv6 Address Design

A Few Practical Principles

Jeff Doyle
Jeff Doyle and Associates, Inc.
Abandon IPv4 Thinking!

- Foremost IPv4 address design consideration: Address Conservation
- Balancing act between:
 - Number of subnets
 - Number of hosts on each subnet
- Result: VLSM
 - Complex
 - Hard to manage
- Legacy “class” categories still occasionally used in IPv4
 - Outdated and misleading
- No such thing as subnet masks in IPv6
 - CIDR-style prefix length notation always used

IPv6 Global Unicast Address Structure

The IPv6 global unicast address structure consists of 128 bits, divided into four parts:
- **Global Unicast Prefix**: 64 bits
- **Subnet**: 64 bits
- **Interface ID**: 64 bits
- **Public Topology**: 3 bits (always 001)
- **Site Topology**: Variable length, varying from 0 to 64 bits
- **Network (Location)**
- **Node (Identity)**

The diagram illustrates the structure with the following breakdown:
- **Global Unicast Prefix**: 64 bits
- **Subnet**: 64 bits
- **Interface ID**: 64 bits

The first 3 bits are always 001, indicating that the address is a global unicast address.
How Big is the IPv6 Address Space?

- IPv4 developed 1973 – 1977
 - $2^{32} = 4.3$ billion addresses
 - More than anyone could possibly use!
- IPv6 developed mid-1990s
 - $2^{128} = 3.4 \times 10^{38}$ addresses
 - More than anyone could possibly use?
How Big is the IPv6 Address Space?

- IPv4 developed 1973 – 1977
 - $2^{32} = 4.3$ billion addresses
 - More than anyone could possibly use!

- IPv6 developed mid-1990s
 - 2^{128} addresses
 - More than anyone could possibly use?

Some Perspective:

1 picometer = 10^{-12} (one trillionth) meter

2^{32} picometers = 4.29 millimeters
 - length of a small ant

2^{128} picometers = 3.4×10^{23} kilometers
 - 34 billion light years
 - Furthest visible object in universe: 13.2B LYs
In Practical Terms…

• Typical IPv6 prefix assignments:
 – Service provider (LIR): /32 ➔ 2^{32} /64 subnets
 – Large end user: /48 ➔ 65,536 /64 subnets
 – Small end user: /56 ➔ 256 /64 subnets
 – SOHO: /64 or /60 ➔ 1 or 16 /64 subnets

• Address conservation is *not* a major consideration
 – Is this wasteful?
 – Yes! (But that’s okay)

• If you don’t have enough subnets, you don’t have the right prefix allocation
What Do I Get in Exchange for Waste?

- **Simplicity**
 - One-size-fits-all subnets
- **Manageability**
 - Hex is much easier to interpret at binary level than decimal
- **Scalability**
 - Room to grow
- **Flexibility**
 - Room to change
Designing for Simplicity

- Start by mapping “working” bits
 - Generally the bits between assigned prefix and Interface-ID
- Group by hex digit
 - 4 bits per hex digit
- Define “meanings” you need to operate
 - Geographic area? Logical topology? Type designation? User ID?
- Try to keep “meanings” on hex boundaries
 - Defined meanings will then be some multiple of 2^{4n}
 - Ex: 16, 256, 4096, 65536…
- Don’t get carried away with meanings
 - No need for 10 layers of address hierarchy if 4 will do
Designing for Simplicity (continued)

• Use zero space as much as possible
 – Which address is easier to read?
 • 2001:DB8:2405:C::27

• Benefit: Operations quickly learns to focus on meaningful bits
 – Ignore public prefix (usually)
 – Ignore Interface-ID (usually)
 – A few hex digits tell operations most of what they need to know

2001:DB8:2405:C::27

Region Office Subnet
Designing for Scale

- Leave “zero” space whenever possible
 - Designate as Reserved
- Insert between “meaningful” digits or bits
 - Allows future expansion in two directions
Designing for the Future

• Trying to anticipate the unanticipated
 – A challenge for any kind of design
• Another reason for well-placed Reserved (zero) space
 – Horizontal Reserved space
 – Vertical Reserved space
• Do not integrate IPv4 into an IPv6 design!
 – Reading IPv4 in hex is (almost) meaningless
 – IPv4 will (eventually) go away
What About Point-to-Point Links?

• 18 million trillion addresses in a /64 link
 – And I will only ever use 2 of them?
 – Are you kidding???

• People have a very hard time accepting this
 – Again: This is not IPv4!
 – What else are you going to do with those addresses?

• It’s a matter of comprehending the scale
 – 500 out of 2^{64} is not really any bigger than 2 out of 2^{64}
Point-to-Point Subnets

• Reasons for using /64:
 – RFC 3627
 – RFC 5375 => /64 usage endorsed and encouraged
 • IANA and RIRS also encourage /64 everywhere
 – Design consistency
 – Required for SLAAC
 – Anycast problems are not significant on PtP links
 • Subnet-Router Anycast
 • MIPv6 Home Agent Anycast
Point-to-Point Subnets

• Reasons for using /127:
 – RFC 6164
 – Ping-pong vulnerability
 • This is an issue with older version of ICMPv6 (RFC 2463)
 • Issue is corrected in newer version of ICMPv6 (RFC 4443)
 • Vendors: Upgrade your code!
 – Neighbor cache exhaustion vulnerability
Point-to-Point Subnets

• Don’t use /126
 – This is IPv4 thinking
 – “Subnet number” is meaningless in IPv6
 – IPv6 does not use broadcast addresses

• Potential compromise:
 – Assign /64 per PtP subnet
 – Address /127 out of the /64
What About Provider Independence?

- There is (currently) no NAT66
- PI address assignment rules (varies by RIR):
 - Must not be an LIR
 - Must be an end site
 - Must have previously justified a PI IPv4 assignment; or
 - Must currently be multihomed with IPv4; or
 - And have an assigned ASN
 - Proposals to end this requirement
 - Will make active use of 2000 IPv6 addresses within 12 months; or
 - Will make active use of 200 /64s within 12 months; or
 - Technical justification why cannot use assignment from LIR
- PI assignment: One or more /48s
 - Larger based on number of sites
- Micro-allocations available for critical Internet infrastructure
Link Local vs Global Unicast

- Some conflict of interpretation
 - Static route next hops
 - BGP peering
- IPv6 says use link local for direct connections
- Accepted practice is to use global unicast
- Recommendation: Stick with accepted practice
 - Link-local harder to manage
 - Interface changes can change link-local address
Other Issues

• DNS design and management is critical
 – DNS issues are well documented

• IP Address Management is critical
 – IPv6 design is not easy to manage via spreadsheets
 – Good luck finding integrated DNS and DHCPv6 management

• Stateful vs Stateless Address Configuration

• Abandon IPv4 thinking!
Questions?

jdoyle@doyleassociates.net

www.doyleassociates.net

+1-303-428-4680