IPv6 Address Design

A Few Practical Principles

Jeff Doyle Jeff Doyle and Associates, Inc.

Abandon IPv4 Thinking!

- Foremost IPv4 address design consideration: Address Conservation
- Balancing act between:
 - Number of subnets
 - Number of hosts on each subnet
- Result: VLSM
 - Complex
 - Hard to manage
- Legacy "class" categories still occasionally used in IPv4
 - Outdated and misleading
- No such thing as subnet masks in IPv6
 - CIDR-style prefix length notation always used

2001:db8:1234:abcd:5401:3c:15:85/48

IPv6 Global Unicast Address Structure

How Big is the IPv6 Address Space?

- IPv4 developed 1973 1977
 - $2^{32} = 4.3$ billion addresses
 - More than anyone could possibly use!
- IPv6 developed mid-1990s
 - $2^{128} = 3.4 \times 10^{38}$ addresses
 - More than anyone could possibly use?

Galaxy UDFj-39546284

How Big is the IPv6 Address Space?

- IPv4 developed 1973 1977
 - $-2^{32} = 4.3$ billion addresses
 - More than anyone could possibly usel Some Perspective:

1 picometer = 10^{-12} (one trillionth) meter

- 2^{32} picometers = 4.29 millimeters
 - length of a small ant
- 2^{128} picometers = 3.4 x 10^{23} kilometers
 - 34 billion light years
 - Furthest visible object in universe: 13.2B LYs

Galaxy UDFj-39546284

In Practical Terms...

- Typical IPv6 prefix assignments:
 - Service provider (LIR): /32 \rightarrow 2³² /64 subnets
 - Large end user: /48
 - Small end user: /56
 - SOHO: /64 or /60

- → 65,536 /64 subnets
- → 256 /64 subnets
- → 1 or 16 /64 subnets
- Address conservation is *not* a major consideration
 - Is this wasteful?
 - Yes! (But that's okay)
- If you don't have enough subnets, you don't have the right prefix allocation

What Do I Get in Exchange for Waste?

- Simplicity
 - One-size-fits-all subnets
- Manageability
 - Hex is much easier to interpret at binary level than decimal
- Scalability
 - Room to grow
- Flexibility
 - Room to change

Designing for Simplicity

- Start by mapping "working" bits
 - Generally the bits between assigned prefix and Interface-ID
- Group by hex digit
 - 4 bits per hex digit
- Define "meanings" you need to operate
 - Geographic area? Logical topology? Type designation? User ID?
- Try to keep "meanings" on hex boundaries
 - Defined meanings will then be some multiple of 2⁴ⁿ
 - Ex: 16, 256, 4096, 65536...
- Don't get carried away with meanings
 - No need for 10 layers of address hierarchy if 4 will do

Designing for Simplicity (continued)

- Use zero space as much as possible
 - Which address is easier to read?
 - 2001:DB8:2405:83FC:72A6:3452:19ED:4727
 - 2001:DB8:2405:C::27
- Benefit: Operations quickly learns to focus on meaningful bits
 - Ignore public prefix (usually)
 - Ignore Interface-ID (usually)
 - A few hex digits tell operations most of what they need to know
 2001:DB8:2405:C::27

Office Subnet Region

Designing for Scale

- Leave "zero" space whenever possible
 Designate as Reserved
- Insert between "meaningful" digits or bits

 Allows future expansion in two directions

Designing for the Future

- Trying to anticipate the unanticipated
 A challenge for any kind of design
- Another reason for well-placed Reserved (zero) space
 - Horizontal Reserved space
 - Vertical Reserved space
- Do not integrate IPv4 into an IPv6 design!
 - Reading IPv4 in hex is (almost) meaningless
 - IPv4 will (eventually) go away

What About Point-to-Point Links?

- 18 million trillion addresses in a /64 link
 - And I will only ever use 2 of them?
 - Are you kidding???
- People have a very hard time accepting this
 - Again: This is not IPv4!
 - What else are you going to do with those addresses?
- It's a matter of comprehending the scale
 500 out of 2⁶⁴ is not really any bigger than 2 out of 2⁶⁴

Point-to-Point Subnets

- Reasons for using /64:
 - RFC 3627
 - RFC 5375 => /64 usage endorsed and encouraged
 - IANA and RIRS also encourage /64 everywhere
 - Design consistency
 - Required for SLAAC
 - Anycast problems are not significant on PtP links
 - Subnet-Router Anycast
 - MIPv6 Home Agent Anycast

Point-to-Point Subnets

- Reasons for using /127:
 - RFC 6164
 - Ping-pong vulnerability
 - This is an issue with older version of ICMPv6 (RFC 2463)
 - Issue is corrected in newer version of ICMPv6 (RFC 4443)
 - Vendors: Upgrade your code!
 - Neighbor cache exhaustion vulnerability

Point-to-Point Subnets

- Don't use /126
 - This is IPv4 thinking
 - "Subnet number" is meaningless in IPv6
 - IPv6 does not use broadcast addresses
- Potential compromise:
 - Assign /64 per PtP subnet
 - Address /127 out of the /64

What About Provider Independence?

- There is (currently) no NAT66
- PI address assignment rules (varies by RIR):
 - Must not be an LIR
 - Must be an end site
 - Must have previously justified a PI IPv4 assignment; or
 - Must currently be multihomed with IPv4; or
 - And have an assigned ASN
 - Proposals to end this requirement
 - Will make active use of 2000 IPv6 addresses within 12 months; or
 - Will make active use of 200 /64s within 12 months; or
 - Technical justification why cannot use assignment from LIR
- Pl assignment: One or more /48s
 - Larger based on number of sites
- Micro-allocations available for *critical Internet infrastructure*

Link Local vs Global Unicast

- Some conflict of interpretation
 - Static route next hops
 - BGP peering
- IPv6 says use link local for direct connections
- Accepted practice is to use global unicast
- Recommendation: Stick with accepted practice
 - Link-local harder to manage
 - Interface changes can change link-local address

Other Issues

- DNS design and management is critical
 DNS issues are well documented
- IP Address Management is critical
 - IPv6 design is not easy to manage via spreadsheets
 - Good luck finding integrated DNS and DHCPv6 management
- Stateful vs Stateless Address Configuration
- Abandon IPv4 thinking!

Questions?

jdoyle@doyleassociates.net

www.doyleassociates.net

+1-303-428-4680