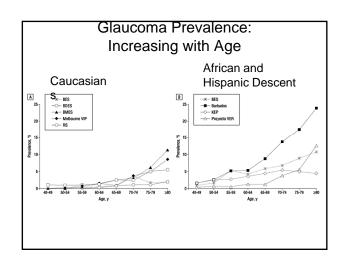


Clinical Insights in Diagnosing Glaucoma


Murray Fingeret, OD, FAAO
Chief, Optometry Section
VA New York Harbor
Brooklyn/St. Albans Campus
Clinical Professor, SUNY College of Optometry
murrayf@optonline.net

Clinical Insights Diagnosis of Glaucoma

- Tests
 - History
 - IOP
 - Gonioscopy
 - Pachymetry
 - Dilated optic nerve assessment- stereo
 - Imaging
 - HRT, GDx, OCT
 - Perimetry- Standard Automated Perimetry (SAP)
 - Selective perimetric tests
 - FDT, SITA SWAP

What are the Risks Associated with the Development of Glaucoma?

- Age
- Race
 - African descent
 - Hispanics
 - Asian for narrow angle
- · Family history
- History cardiovascular disease & Reduced blood press
- Prior use of steroids
- Medications
 - Systemic beta blockers
 - Diuretics
- Perfusion pressure
- Blood pressure minus IOP

Goldmann Applanation Tonometry

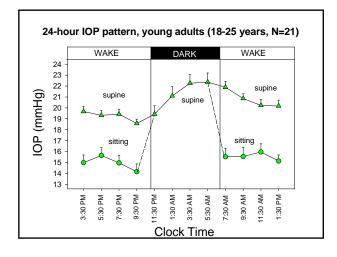
- Goldmann applanation tonometry assumes central corneal thickness (CCT) of 500 um)
- GAT over- or underestimates IOP by as much as 5 mmHg for every 70 um of CCT difference from ~520um

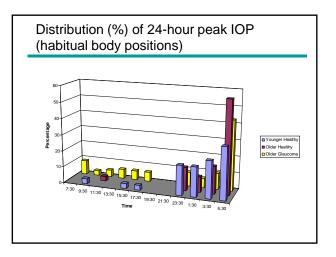
Central Corneal Thickness and the Diagnosis of Glaucoma

- Pachymetry is Part of the Ocular Examination
 Whenever Glaucoma is Suspected
- · Re-classification on basis of correction factors
 - 44% of Normal Tension Glaucoma become POAG
 - 35% of Ocular Hypertension become normal

CCT and risk of glaucoma

- Is the increased risk of glaucoma with a thin cornea a result of
 - -IOP measurement error?
 - -Greater susceptibility?
 - do corneal biomechanical properties reflect scleral/lamina biomechanical properties?


Should You Use the Pachymeter To Screen for Glaucoma?


Should you do the Test on Everyone Presenting to your Office, Not Just Suspects or Those with Glaucoma?

Should IOP be adjusted for Central Corneal Thickness?

Is their a purpose for the conversion charts that come with pachymeters?

What Should One Do When a Person Has Glaucoma and the IOP Never Appears to be Elevated?

Key Factors for Gonioscopy

- · Good anesthesia
- Dark room
- · Start with 1mm, narrow beam of light
 - Keep beam away from pupil
- Patient's maintains primary gaze
- · Minimize lens tilt
 - Only minor movements permitted to see over convexity of iris
 - Otherwise narrow open will appear open

Key Factors for Gonioscopy

- · Use high magnification
- Assess whether iris is in contact with TM
- If not, estimate geometric angle b/w TM and adjacent peripheral area of iris
- Describe level of most anterior point of contact b/w iris and cornea-scleral coat
- Once gonio is completed 360°, repeat with increased illumination and indentation

Key Factors for Gonioscopy

- To understand if angle is narrow but open,
 - For Goldmann style lenses, instruct patient to look toward mirror while pressing on rim of lens overlying mirror
 - Indents central cornea
- Describe the level of insertion of iris as well as height and circumference of peripheral anterior synechia

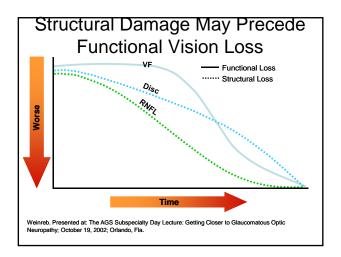
Why Document?

- Evidence suggests disc documentation is poor
- Glaucoma staging
- · Disc size determination
- Assessment of quantitative and nonquantitative features
- · Global risk assessment
- · Detection of progression

What is the First Optic Nerve Instrument I Should Buy?

A Digital Fundus Camera

Standard of Care is For Some Form of Documentation When Glaucoma is Presented or Suspected

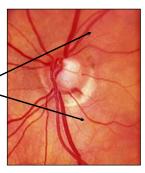

May be done with Photography or Imaging

Do We Need Imaging?

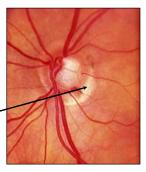
- Will Imaging Allow Earlier Diagnosis?
 - More cases detected based upon structural evaluation of the optic nerve or NFL using imaging instrumentation?
- Is IMAGING the STANDARD of CARE?
 - No, documentation is
 - Imaging is very useful but not required AT THIS TIME

Five Rules for Assessment of the Optic Disc in Glaucoma

1 Observe the scleral Ring to identify the limits of the optic disc and its size

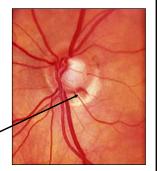

Five Rules for Assessment of the Optic Disc in Glaucoma

- 1 Observe the scleral Ring to identify the limits of the optic disc and its size
- 2 Identify the size of the Rim


Five Rules for Assessment of the Optic Disc in Glaucoma

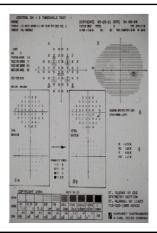
- 1 Observe the scleral Ring to identify the limits of the optic disc and its size
- 2 Identify the size of the Rim
- 3 Examine the Retinal nerve fiber layer

Five Rules for Assessment of the Optic Disc in Glaucoma


- 1 Observe the scleral Ring to identify the limits of the optic disc and its size
- 2 Identify the size of the
- 3 Examine the Retinal nerve fiber layer
- 4 Examine the Region of parapapillary atrophy

Five Rules for Assessment of the Optic Disc in Glaucoma

- Observe the scleral Ring to identify the limits of the optic disc and its size
- 2 Identify the size of the Rim
- 3 Examine the Retinal nerve fiber layer
- 4 Examine the Region of parapapillary atrophy
- 5 Look for Retinal and optic, disc hemorrhages



Structural Assessment in Glaucoma

- The Optic Nerve Head
- The Nerve Fibre Layer Retinal Thickness

Six Steps in Analyzing the Single Field Printout

- · Reliability Indices
- Gray Scale
- Raw Data
- Total/Pattern Deviation Printouts
 - Compare between the two
 - Explain any differences
- Global Indices
- Glaucoma Hemifield Test

False Positives may be the Most Important Reliability Indicator

Second Best is Whether the Blind Spot was Plotted Is there a 0?

Unreliable Visual Field

- Excessive Fixation Losses
- High False Positives
- Borderline False Negatives
- White Scotomas
- GHT-Abnormally High Sensitivity

False Negatives are Not a Good Indicator of Unreliability

The Learning Curve is Real

Glaucomatous Visual Fields are Extremely Variable

Need to confirm change and confirm again

New Tools for Diagnosing Glaucoma

- · Structure vs. Function
- Goal is to Detect Damage Very Early
- What is Their Role?
- What do you do when imaging test is positive is everything else is negative
 - Does the imaging test drive the diagnosis?

Selective Perimetric Tests FDT Matrix, HEP and SITA SWAP

Frequency Doubling Perimetry

- Low spatial frequency (<1 cycle per degree) and high temporal frequency (25Hz) grating
- undergoes counter phase flicker
- 100 target size
 - large target
 - · reduced fluctuation
 - · reduced variability across field
 - scotomas once identified tend to be consistent
- · Contrast varied in step wise fashion until detected

Short Wavelength Automated Perimetry (SWAP)

- · Also called Blue-Yellow perimetry
- Detects early damage several years before present on conventional perimetry
- Now available in SITA Mode
 SITA SWAP

