

Apples to Apples, Pears to Pears in SSS performance Benchmarking

Esther Spanjer, SMART Modular

Education

SNIA Legal Notice

- The material contained in this tutorial is copyrighted by the SNIA.
- Member companies and individual members may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced in their entirety without modification
 - The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.
- Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.
- The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.

SSS Performance Benchmarking Learning Objectives

- Get a good understanding of the various parameters that influence the performance characteristics of SSDs
- Get a full understanding of the proposed SNIA Performance Measurement Specification
- Provide step-by-step guidance on how to set up a test benchmark that enables comparison among the various SSS devices

SSS = Solid State Storage

Traditional hard disk drive

Solid state hard drive

The Performance Landscape

Variables influencing Performance

Platform

- Test Hardware (CPU, interface, chipset, etc)
- Software (OS, drivers)

SSS Device Architecture

Flash geometry, cache, flash management algorithm, etc

Workload

- Write history (Terabytes written, % spares)
- Random, sequential, read/write mix, etc
- Preconditioning (Random, sequential, transfer size, etc)
- Data content
- TRIM command

Apples to Apples, Pears to Pears in SSS Performance Benchmarking © 2010 Storage Networking Industry Association. All Rights Reserved. Education

The 3 dimensions of SSS performance

SSS performance depends on

- Read/Write Mix
- Transfer Size
- Queue Depth (not shown)

Performance States

Workload Dependency - 1

Workload dependency - 2

Dependency on data content

Dependency on data content

Benchmark Suites

	Test Suite	Commercial/ Client SSD	Enterprise SSD
PCMark	HDD Score, OS and application loading timing, user simulation (surfing web, windows media player, etc)	\checkmark	
SysMark	Syster of test. Measu rform based on ospe score (0-250, Type of precondition	ning	
IOMeter	simula workload and order of benchmarks car		V
HDTach/ H2benchw	Performance, Ac		
HD Tune	Performance stability, Se al/Burs performance, Access Tim		
Everest	Random Access Time (Read/Write)	\checkmark	\checkmark
VDBench	Workload generator, performance on DAS and NAS		\checkmark

SNIA Technical Working Group (TWG) created in

- ILCPCALADIC LASY COMPANISON DECINCENTICES
- Practical Complete with reasonable time and effort
- Accessible open specification, 3rd party validation

Scope of SSS Performance Spec

Setup and Methodology

- Purge
- Preconditioning
- Test Parameters

Workloads (synthetic)

- Client IOPS, Throughput, Latency
- Enterprise IOPS, Throughput, Latency

Reporting

- Show convergence to steady state
- Show performance results during steady state

Performance Test Platform in development by SSSI Tech Dev Group (2H10)

V0.x available for public review/comment

- <u>www.snia</u>.....
- Your Feedback is crucial!
 - Do we test the right things? Do we need others?
 - Are the reports useful?
 - Are the procedures clear?
 - Does this truly give us apples-to-apples performance comparison?

Performance Test Platform

Working in SSSI; please join us

I. Prepare the Device

- Purge/Secure erase \rightarrow put SSS back into "original" state
- 2. Precondition the Device
 - Write data 2x capacity \rightarrow bring device to known state
- 3. Steady State Testing
 - Run Test Loop up until steady state is achieved
 - Performance stays within ± 10% margin in last 5 test loops

4. Test Report

- Show convergence to steady state
- Show 3D test results

Test Report

Indicates steady state performance

- Various Block Size
- Various Read/Write mixes

SSSI Group of SNIA

- Technical Work Group (TWG) → Performance Benchmark Spec
- Tech Dev Group \rightarrow Performance Test Platform

◆ JEDEC 64.8

- Specification for SSD endurance measurement
- SSDA
 - Testing of reliability (power cycling, data retention, endurance, etc) and OS compatibility (Windows 7)

- SSS Performance is dependent on many variables
- SNIA Performance Specs allows apples to apples comparison
 - Spec for review at <u>http://www.snia.org/forums/sssi</u>
 - Send your feedback to ssstwg@snia.org

GET INVOLVED!!

Please send any questions or comments on this presentation to SNIA: <u>tracksolidstate@snia.org</u>

Many thanks to the following individuals for their contributions to this tutorial. - SNIA Education Committee

David Landsman Easen Ho Eden Kim Neal Ekker Dan Le