## Rectal Cancer Location: the Surgical Perspective

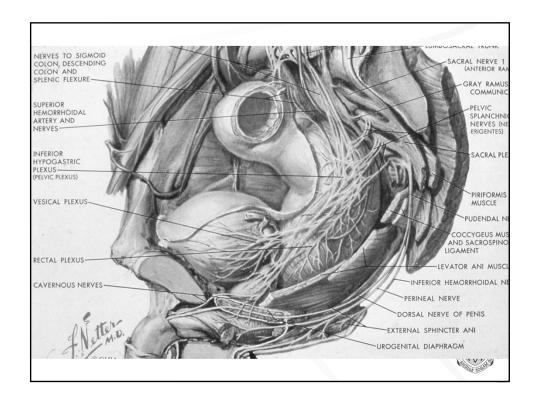


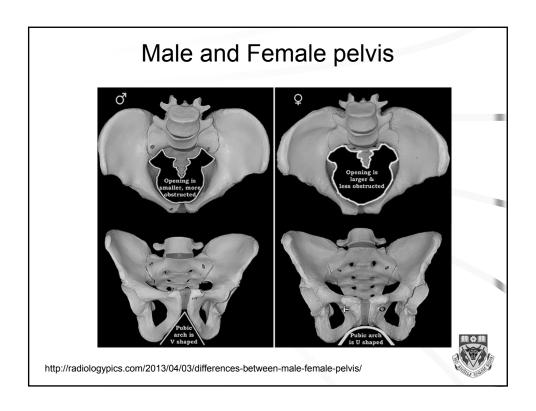
September 5, 2014

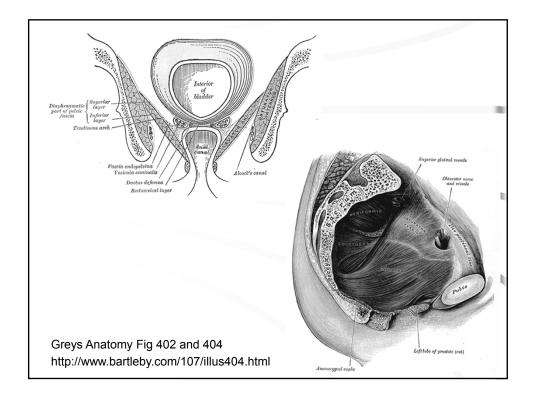
W. Donald Buie MD,MSc, FRCSC Associate Professor of Surgery University of Calgary

16th Annual Western Canadian Gastrointestinal Cancer Consensus Conference 🜼 2014

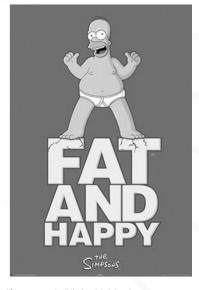



• I have no disclosures





## Outline

- Surgical Anatomy review
- Location ... where is the tumour?
- Location and neoadjuvant therapy
- Location and surgery; LAR, APR or LE
- Location and surgeon experience

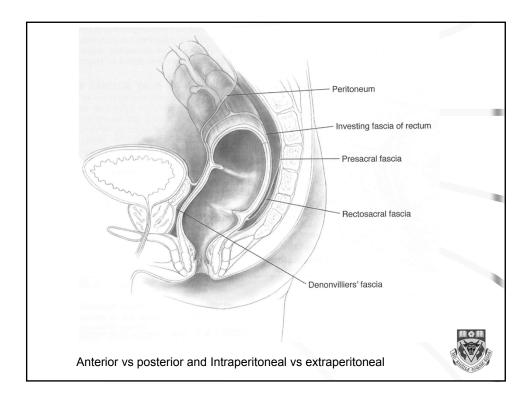








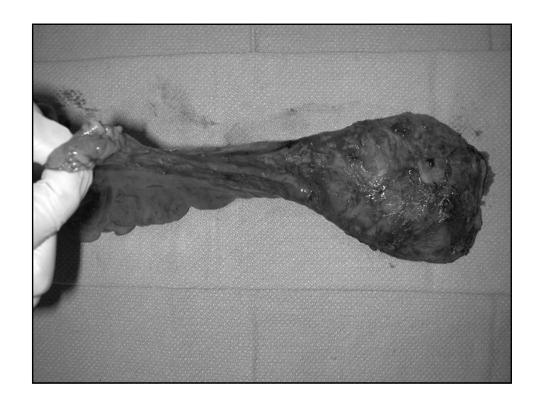

## **Body Habitus**






http://dgeiu3fz282x5.cloudfront.net/g/l/lghr19125.jpg

## The Mesorectum


- the rectum and its mesentery are a single fascia-enveloped unit, anatomically separate from surrounding pelvic structures
- Contains the blood vessels and lymphatics of the rectum
- It tapers down and ends just above the levator hiatus
- surgical violation of this anatomic package near a tumour may lead to a positive circumferential margin, a known predictor of local recurrence



## Anatomy summary

- · Mesorectum ends just above the levator hiatus.
- The Anorectal junction abuts the levator hiatus
- Posterior tumours can be mobilized more as the rectal wall is longer
- More structures anteriorly
- Intraperitoneal vs extraperitoneal location is variable

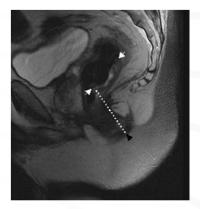






## Why is location important?

#### Height


– The height from the anal verge is of secondary importance …

What we really want to know is ....

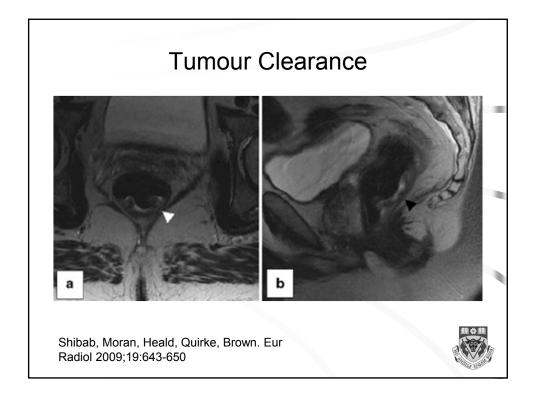
- proximity to anal sphincter
- proximity to pelvic floor levators

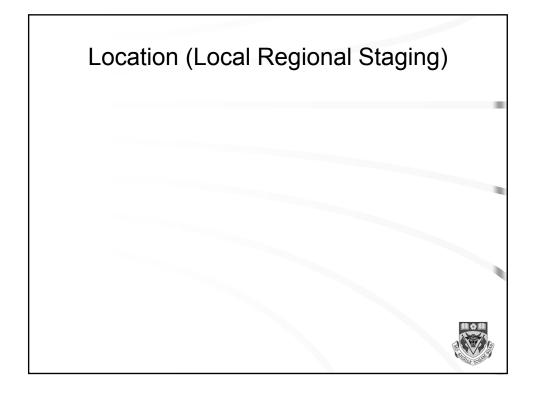


# Tumour height measured from Anal verge vs upper sphincter



Shibab, Moran, Heald, Quirke, Brown. Eur Radiol 2009;19:643-650





# The levator and external sphincter are contiguous structures Shibab, Moran, Heald, Quirke, Brown. Eur Radiol 2009;19:643-650











## Staging

"... if it would be possible to decide the category of the case before operating, this would be very useful information."

Cuthbert Dukes, 1932



## What do we want to know?

Local regional variables:

- 1. Location of tumour
- 2. Depth of penetration of tumour through intestinal wall
- 3. Presence of regional lymph node metastasis



#### Why do we want to know it?

## Stage dictates THERAPY!

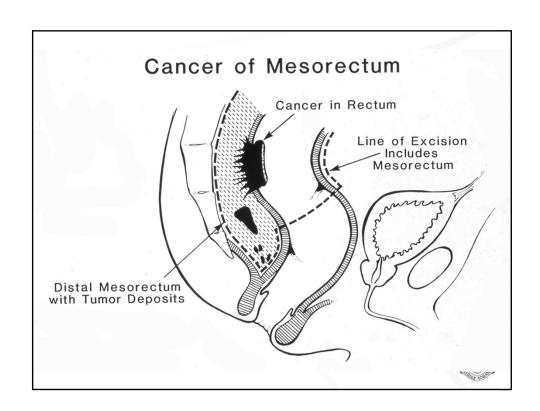
Should we consider local excision?

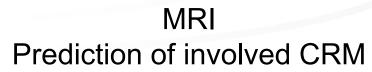
Should this patient have Neoadjuvant therapy?

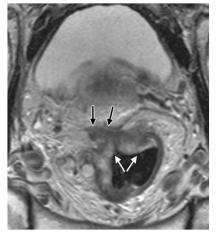
## Stage dictates PROGNOSIS

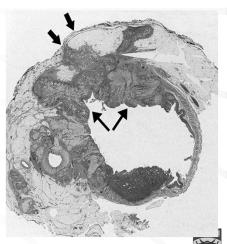


## Local regional staging TRUS


- Most useful when considering local excision Limitations:
- · Does not see mesorectal envelope well
- Tumour must be non obstructing
- Must be 10 cm or less for best images
- T-stage
  - Accuracy 85% +
  - Problem areas:
    - T2 vs. T3
    - post radiation edema vs. tumor
    - overstaging (11-18%) and understaging (5-13%)





#### **MRI**


- The Gold Standard
- Technology evolving rapidly!
  - Intramural staging improving (T1,T2)
  - Evaluation of the integrity of the mesorectal envelope (CRM)
  - Proximity of tumour to the surgical margin
  - Proximity of the tumour to the sphincter/ levators
  - Vascular invasion











≥1 mm is considered positive; 1-2 mm borderline

Beets-Tan 2004

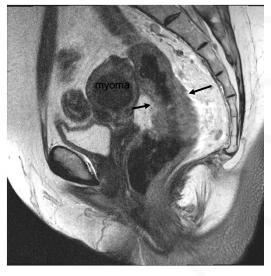
## MRI and Mesorectal Margin

|                 | Histopathologic Examination |          |       |
|-----------------|-----------------------------|----------|-------|
|                 | Clear                       | Involved | Total |
| MRI Prediction: |                             |          |       |
| Clear           | 215                         | 15       | 230   |
| Involved        | 4                           | 11       | 15    |
| Total           | 219                         | 26       | 245   |

Accuracy = 92% (226/245)

Sensitivity = 42% (11/26)

PPV = 73% (11/15)


Specificity = 98% (215/219)

NPV = 93% (215/230)

MERCURY Study Group. BMJ. 2006;333:779-784



# Proximity of tumour to levators and sphincter complex





Location and neoadjuvant therapy



#### Pre-op Radiation Decreases Local Regional Recurrence and is Additive to Proper Surgical Technique

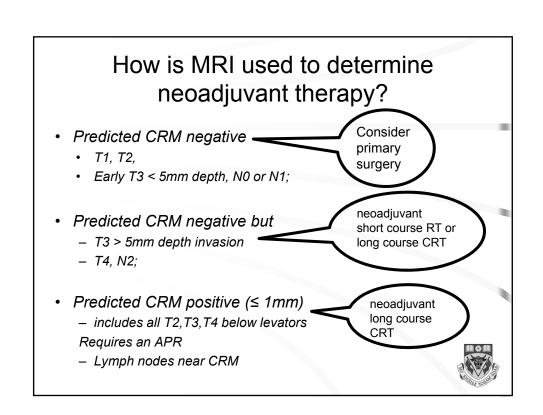
| Study                          | Number | Radiation<br>Gy/ fraction | Surgery alone<br>Local Rec (%) | Surgery/XRT<br>Local Rec (%) |      |
|--------------------------------|--------|---------------------------|--------------------------------|------------------------------|------|
| St. Marks 1994                 | 468    | 15 / 3                    | 21                             | 14*                          |      |
| Bergen,<br>Norway,1990         | 309    | 31.5 / 18                 | 23                             | 15                           |      |
| Manchester,<br>1994            | 284    | 20 / 4                    | 37                             | <u>13*</u>                   |      |
| EORTC,1988                     | 466    | 34.5 / 15                 | 30                             | <u>15*</u>                   |      |
| MRC-2, 1996                    | 279    | 40 /20                    | 46                             | 36                           |      |
| Stockholm, 1995                | 849    | 25 / 5                    | 28                             | <u>14*</u>                   |      |
| Sw Rectal Ca<br>Trial, 1997    | 1168   | 25 / 5                    | 27                             | <u>11*</u>                   | M    |
| Dutch TME trial,<br>2002 (5yr) | 1861   | 25 /5                     | 11.4                           | <u>5.8*</u>                  |      |
|                                |        | * Der                     | notes results that are sta     | atistically significant      | 1061 |

# Pre-op RT is more effective at decreasing local recurrence

| <u>Study</u> | Number  | Rads         | 5 yr LR       | 5 yr OS | 1 |
|--------------|---------|--------------|---------------|---------|---|
| Uppsala (SC  | RT)     |              |               |         |   |
| Pre-op       | 236     | 25 Gy (1 wk) | 13%           | 47%     |   |
| Post-op      | 235     | 60 Gy (8 wk) | 22%*(p=0.02)  | 40%     |   |
|              |         |              |               |         |   |
| NSABP – RO   | 3 (CRT) |              |               |         |   |
| Pre-op       | 130     | 50.4 Gy      |               | 74%     |   |
| Post-op      | 137     | 50.4 Gy      |               | 66%     |   |
|              |         |              |               |         |   |
| German Trial | (LCCRT) |              |               |         | 1 |
| Pre-op       | 405     | 50.4 Gy      | 6%            | 76%     |   |
| Post-op      | 394     | 55.8 Gy      | 13%*(p=0.006) | 74%     |   |

Note: Complete treatment in 90% of pre-op vs 50% of post-op

Frykholm et al. DCR 1993; 36: 564-572 Hyams et al. DCR 1997; 40: 131-139 Sauer et al. N Engl J Med. 2004; 351: 1731-1740




# What are the surgical advantages of Neoadjuvant Chemoradiation?

#### Neoadjuvant LCCRT:

- Improve mobility fixed / tethered tumours
- Improve circumferential margins
- Decrease tumour size (Bulky lesions)\*
  - · Borderline reconstructable
  - · Large tumours small pelvis
  - · Male or obese
  - Tumour regression may permit reanastomosis by improving technical issues (Sphincter sparing)
- We do not rely on neoadjuvant chemoradiation to sterilize the distal intramural margin





# Local Recurrence vs. Radial Margin in Rectal Cancer

Adam, 1994 - 190 pt, 141 curative surgery

|          | Local<br>Recurrence | Local<br>Recurrence<br>Hazard ratio | Survival Hazard ratio |
|----------|---------------------|-------------------------------------|-----------------------|
| Positive | 78 %<br>CI (62-94)  | 12.2<br>CI (4.4-34.6)               | 3.2<br>CI (1.6-6.5)   |
| Negative | 10%<br>CI (4-16)    | 1                                   | 1                     |



# What is the Cost? Long term function following adjuvant radiotherapy

|                    | Uppsala (Mea | n F/U 6.7 yrs) | Stockholm | I & II (mean F/U 15 yrs)                          |
|--------------------|--------------|----------------|-----------|---------------------------------------------------|
| Symptoms           | Sx (%)       | Sx/XRT (%)     | Sx (%)    | Sx/XRT (%)                                        |
|                    | n=44         | n=49           | N=74      | N=65                                              |
| Frequency ( >5/d)  | 2            | 18             |           |                                                   |
| Loose liquid stool | 2            | 25             |           |                                                   |
| Fecal urgency      | 12           | 41             |           |                                                   |
| Fecal incontinence | 5            | 49             | 26%       | 57%                                               |
| Use of pads        | 0            | 26             |           |                                                   |
| Differ. Stool/gas  | 95           | 77             |           |                                                   |
| Social impact      | 15           | 29             |           |                                                   |
| Antidiarrheal use  | 11           | 25             |           |                                                   |
| Abdominal pain     | 14           | 27             |           |                                                   |
| Tenesmus           | 3            | 1 1.5          | 1 0       | R. 1998; 41: 543-549<br>Surg. 2006; 93: 1519-1525 |

#### **Location and Surgery**

- Should we consider local excision?
- Should this patient have a low anterior resection or an APR?



#### **Transanal Excision**

- Suitable in 3-5% of pts.
- Criteria not well defined, but ideally:
  - Distal 1/3 of rectum (except with TEM)
  - Mobile (generally T1)
  - < 1/3 circumference
  - Polypoid > ulcerated
  - · Well / moderately well differentiated
  - < 4cm in size</li>
  - No lymphovascular invasion
  - No evidence of nodal metastases



# RECTAL CANCER LOCAL EXCISION (trans anal excision)

#### pro

- low morbidity/mortality
- avoids sexual/urinary/bowel dysfunction
- avoids colostomy

#### con

- nodal status not pathologically assessed
- involved nodes not excised

TMN - Total mesorectal neglect R Madoff



# Transanal Excision Local Recurrence

| Study / year         | No. of patients | T1 Local Rec. | T2 Local Rec. |
|----------------------|-----------------|---------------|---------------|
| Stipa et.al. 2004    | 47              | 16%           | 20%           |
| Maeda et.al. 2004    | 91              | 2%            | 15%           |
| Gopaul et.al. 2004   | 64              | 13%           | 24%           |
| Gao et.al. 2003      | 47              | 11%           | 27%           |
| Patty et.al. 2002    | 94              | 14%           | 28%           |
| Garcia-Aguilar 2000  | 82              | 18%           | 37%           |
| Mellgren et.al. 2000 | 108             | 18%           | 47%           |
| Chakravarti 1999     | 52              | 11%           |               |
| Sticca et.al. 1996   | 71              | 0%            | 10%           |
| Baron et.al. 1995    | 76              | 19%           | 21%           |
|                      |                 |               |               |
| Total                | 732             | 12%           | 28%           |

Compare to Dutch Rectal Cancer Trial - <1% in stage 1 pts

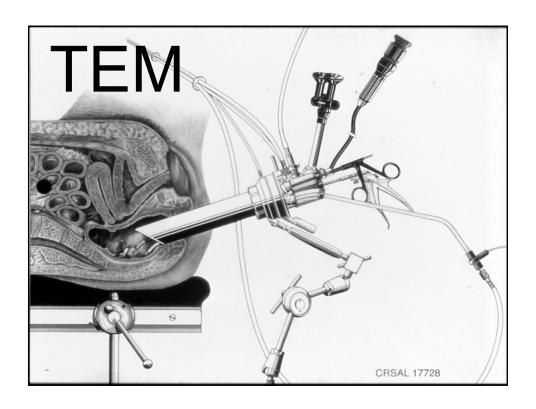
## Total mesorectal neglect Risk of lymph node metastases

- Increased by:
  - Lower 1/3 of rectum
  - Poor differentiation\*
  - Lymphovascular invasion\*
  - Sm level 3 T1 sub staging (Kudo et al. Endoscopy. 1993;25:455



# T1 Sub-staging Submucosa Sm1 Sm2 Sm3

#### Sm Level and LNM

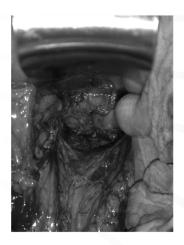

- Sm1 = 0%, Sm2 = 10%, Sm3 = 25% » Kikuchi et al.DCR. 1995;38:1286-1295
- Sm1 = 3%, Sm2 = 11%, Sm3 = 34%
   Odds ratio Sm3 vs. Sm1 = 5
   Nascimbeni et al. 2002;45:200-206



# Transanal Excision Bottom Line

- Think this out carefully!
- · Discuss with patient ahead of time!
- Use very selectively!
- · Treat as an excisional biopsy






## Advantages of TEM TransEndoscopic Microsurgery

- Improved visibility
- Larger lesions can be taken out intact (not piecemeal)
- Access to mid and upper rectal lesions
- · Potential sampling of lymph nodes
- Very good for large villous tumours
- Good for select T1 cancers with low risk of lymph node metastases
- Possibility for mesorectal excision ??



#### Radical excision





- 1. Rectal cancer surgery is technically driven
- 2. The surgical procedure (surgeon) may be the most significant intervention in resectable rectal cancer
- 3. The principles of rectal cancer surgery can be learned but .... it requires practice / practise



# Outcome by Specialization Rectal subset

|                                      | Specialist | Non-specialist | P-value |
|--------------------------------------|------------|----------------|---------|
| Patients                             | 531        | 1655           |         |
| 5 yr overall<br>Survival Rectum      | 58.6%      | 47.0%          | 0.009   |
| 5 yr cancer specific survival Rectum | 72.0%      | 60.6%          | 0.047   |

McArdle & Hole. Br J Surg. 2004; 91: 610-617



# Outcomes by Training and Volume

|                           | >21 resections | <21 resections |
|---------------------------|----------------|----------------|
| Local Recurrence          |                |                |
| Colorectal trained        | 10.4%          | 21.1%          |
| non-colorectal trained    | 27.8%          | 44.6%          |
| Disease-specific survival |                |                |
| Colorectal Trained        | 67.3%          | 54.5%          |
| Non-colorectal trained    | 49.0%          | 39.2%          |

Porter et.al. Ann Surg. 1998;227:157-167

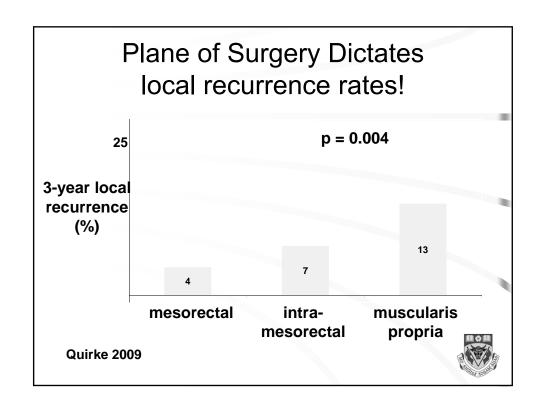


## Know your surgeon!





## **Total Mesorectal Excision**


- the rectum and its mesentery are a single fascia-enveloped unit, anatomically separate from surrounding pelvic structures
- surgical violation of this anatomic package leads to a positive circumferential margin



# Summary of the importance of Circumferential resection margin (CRM)

- A positive CRM is an independent predictor of local recurrence and survival (Quirke, Adam)
- Risk for positive CRM increases with more advanced T and N stage (Nategaal/ Quirke)
- Risk for positive CRM increases with violation of the mesorectum (Quirke)





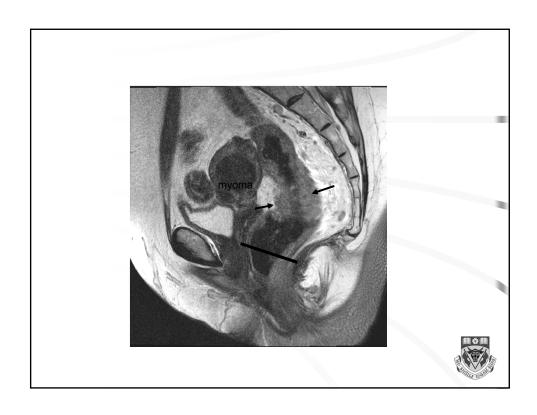
# Can Adjuvant Radiation Compensate for Surgical Technique?

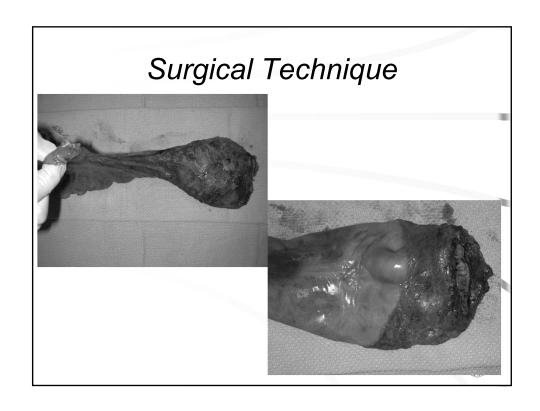
## NO!!

- Radiation can decrease local recurrence by 50% from <u>base line</u> <u>levels</u> Pahlman. 1997
- Thus surgical technique is the most important variable!!

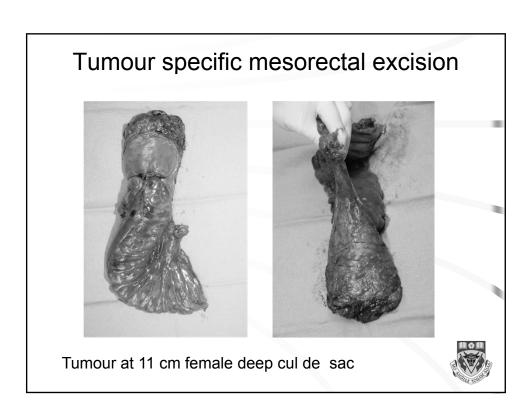


#### Mesorectal Excision


Total mesorectal excision refers to removal of the rectum and mesorectum down to the pelvic floor and the levator hiatus


· appropriate for tumors of the mid and lower rectum

Tumour specific mesorectal excision refers to the removal of the rectum and mesorectum for a distance of 5 cm below the tumour (no coning) ( leave lower rectum with its mesorectum)


appropriate for tumors of the upper rectum (> 10 cm)





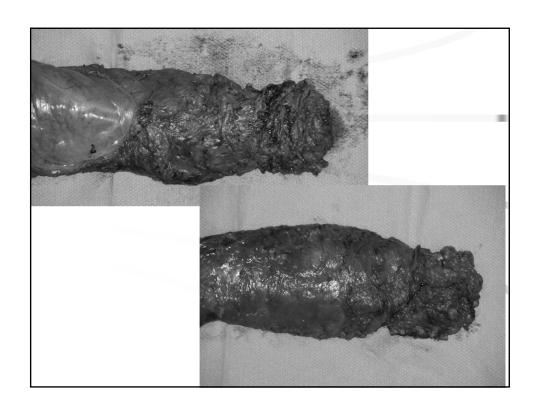






#### How low can we go?

- · Coloanal stapled
  - To the level of the levators
- Coloanal hand sewn
  - Just above the dentate
- Intersphincteric
  - To the level of the dentate removing a portion of the internal sphincter


For an extended low resection below the mesorectum, a 1 cm margin is optimal, may accept less < 1 cm if post neoadjuvant



#### Abdominoperineal resection and TME

- Indications for APR
  - Invasion of the levator ani or sphincter complex
  - Inability to obtain proper distal margin without resecting the sphincter
  - Preoperative incontinence
  - Technical morbid obesity
- Issues with APR
  - Tumours located at the level of the levator hiatus
  - Significantly more positive CRMs
  - Significantly more perforations







#### Rectal Cancer and Surgeon Volume

Surgery is performed at 22 hospitals across Alberta

8 hospitals perform a mean of ≤ 3 cases per year

#### Surgeon Volume

top quintile = High volume (HV) Surgeons
 ≥ 9 surgeries/year
 (range 9-31 cases/yr)



#### What needs to be done?



- Increase the number of high volume surgeons and provide them with the tools to do quality work.
- HV surgeons:
  - completed 68% of rectal cancer surgeries in Alberta in 2011, up from 32% in 1997; we need to do better!

#### Why?

- higher rates of grade 3 TME specimens
- lower rates of CRM positivity
- higher sphincter preservation rates
- lower 5-year local recurrence
- higher 5-year disease-specific survival



# How? Education (AHS PRIHS Grant)



#### Surgeons want to do the right thing

#### Rectal Cancer School:

- Proper operative (TME) techniques
- · Appropriate staging and interpretation of MRI
- · Use of Multidisciplinary Tumour Boards
- · Appropriate use of neo adjuvant therapy
- Centralization of rectal cancer surgery to high-volume surgeons (location, location, location ...)
  - May be at the local level
  - Central referral of difficult cases



#### Need for a Clinical Pathway



#### Radiologists

- Goal
  - Dedicated high resolution imaging (MRI) for all patients undergoing curative surgery for rectal cancer in a timely manner using a synoptic report
  - MRI performed according to the Mercury protocol for T2 and T3 tumours
  - Correlation of test results and management plan
  - Ensure access within accepted timelines



#### Need for a Clinical Pathway

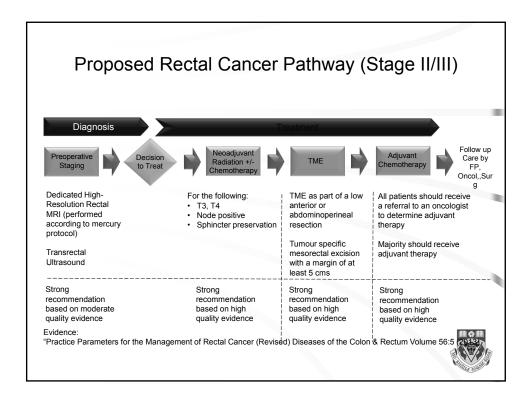


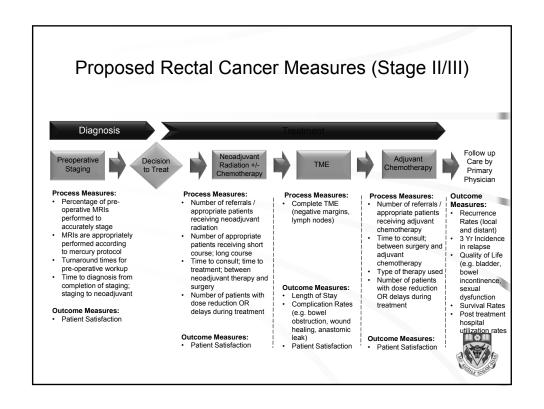
#### Medical and Radiation oncologists

#### Neoadjuvant therapy

- Goal All patients with locally advanced operable rectal cancer have the opportunity to be discussed at a multidisciplinary conference (MDC) and offered Neoadjuvant therapy when appropriate
  - Care plan based on preoperative staging
  - Current guidelines in Alberta include neoadjuvant long course chemoradiation or short course radiation
  - Only 50% of Alberta patients with stage II and 66% of stage III rectal cancer received neoadjuvant therapy (2011)




#### **Pathologists**




#### Continuous Quality Improvement

- Goal
- Complete TME evaluation of every rectal cancer specimen based on Quirke methodology
- 22% of cases were not graded for TME
- CRM positivity reported 78% of the time
- Lymph node harvest mean 17 nodes
- Lymph node status not reported in 4%







# Pathway is based on accepted standards of care

#### PRACTICE PARAMETERS

## Practice Parameters for the Management of Rectal Cancer (Revised)

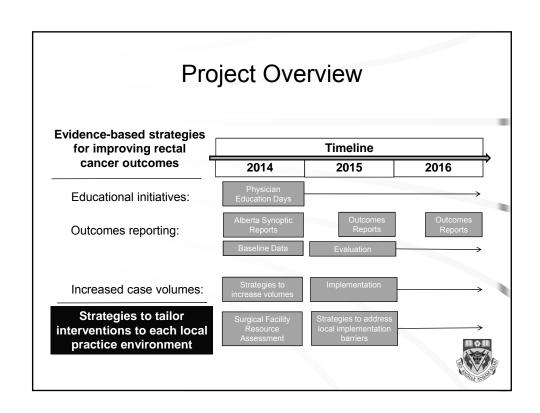
J. R. T. Monson, M.D.  $\,^{\bullet}$  M. R. Weiser, M.D.  $\,^{\bullet}$  W. D. Buie, M.D.  $\,^{\bullet}$  G. J. Chang, M.D. J. F. Rafferty, M.D.; Prepared by the Standards Practice Task Force of the American Society of Colon and Rectal Surgeons

Diseases of the Colon & Rectum Volume 56:5 (2013)



## What can we expect?

- Better more efficient care
- Major impact on immediate and long-term patient outcomes
- Impact on survival rates
- Decreased local recurrence rates
- Potential reduction in repeat surgeries






## How will we accomplish this?

- Design and implement a <u>knowledge translation strategy</u> to promote uptake of a rectal cancer clinical pathway that can be tailored to each local practice environment
- Evidence-based strategies for improving rectal cancer outcomes:
  - Physician education initiatives
  - Outcomes reporting
  - Centralized Care





#### **Overall Goal**

Optimal safe effective patient centered care for every rectal cancer patient in Alberta



## Summary

- Rectal cancer surgery has undergone a technical evolution
  - Anatomic basis for resection (Location)
  - Cross sectional imaging (Location)
  - Concentration of surgical care (Location)
  - Extension of transanal methods
- · Integration of multidisciplinary care
  - Standardized Care Pathways
  - Appropriate use of neoadjuvant therapy

#### **Future**

 Chemoradiation, transanal excision of residual tumour followed by observation



## Acknowledgements

#### Data

- Dr. Kevin Klingbeil
- Dr. Anthony MacLean
- Dr. Indraneel Datta
- Dr. John Heine
- Dr. Mantaj Brar
- Yvonne
- Iris

#### Project Leadership Team

- Todd McMullen\*
- Don Buie\*
- Neil Hagen\*
- Anthony MacLean\*
- Haili Wang\*
- Angela Estey
- Barb Sonneberg
- Adam Elwi
- Melissa Shea-Budgell



