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Reinforcement Learning (RL) framework 

relies on task-dpt hand-tuned parameters 

exp(β . Q(s,a)) 

Q(s,a)  Q(s,a) + α . δ 

Σ   exp(β . Q(s,b)) 
b 

P(a) =   

Action values update 

Action selection 

Reinforcement signal δ = r + γ . max[Q(s’,a’)] – Q(s,a) 

Sutton & Barto (1998) MIT Press. 



Meta-learning: Adaptive regulation of RL 

parameters 
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Dopamine: prediction error  

Acetylcholine: learning rate  

Noradrenaline: exploration  

Serotonin: temporal discount  



Example of meta-learning process 
Meta-learning methods propose to tune RL parameters as a function of 

indicators of performance monitoring such as average reward and uncertainty 

(Schweighofer & Doya, 2003; Doya, 2008). The difference between average 

reward at different timescales can be used, similar to reported dACC correlates 

(Bernacchia et al. 2011; Wittmann et al., in the group of Matthew Rushworth). 

condition change 
(from immediate to long-term reward) 

Simulation from 
Schweighofer & 
Doya 2003 



dACC as a potential regulator of RL 

params based on cognitive control level 

• dACC is a central component for cognitive control (Botvinick et al. 2001), 
an important relay of feedback signals to guide behavior (Holroyd & Coles, 
2002, 2008) and to set behavioral strategies or task-sets (Dosenbach et al. 
2006). 

• dACC is important for feedback monitoring and show correlates of 
outcome history (Seo and Lee, 2007; Bernacchia et al. 2011; Wittmann et 
al.) and error-likelihood (Brown & Braver 2005). 

• dACC could act as a regulator or energizer of decision-making processes in 
the LPFC (Kouneiher et al. 2009). 

• dACC activity encodes volatility information, which can be used to 
dynamically tune the learning rate parameter in RL models (Behrens et al. 
2007). 



Monkey task in Emmanuel Procyk’s group 

Previous results: 

• Feedback categorization mechanisms in dACC (Quilodran et al. 2008) 

• dACC neurons selective to search or repetition periods (Quilodran et al. 
2008) as indicators of exploration/exploitation level? 



Computational model 

Series of correct trials -> exploitation Series of error trials -> exploration 

Predictions: 

•Feedback monitoring signals in dACC (Holroyd & Coles 2002) 

•Change in LPFC choice selectivity between exploration and exploitation 

(common predictions of LPFC exploration models; McClure et al. 2006; 

Krichmar 2008; Durstewitz & Seamans 2008; Cohen et al. 2007) 



(Brief) sketch of robotic implementations 

Reproduction of monkey performance and behavioral properties. Additional 
experiments to predict how monkeys may learn the task structure of 
Emmanuel Procyk’s task (Khamassi et al. 2011 Frontiers in Neurorobotics). 



New analyses of single-unit recordings 

• Previous analyses of dACC feedback-related activity (Quilodran et al. 2008) 

• New model-based analyses and comparison of LPFC and dACC activities in 
both pre-feedback and post-feedback epochs (Khamassi et al. 2014 
Cerebral Cortex) 



Model behavior fitting comparison 

Classical reinforcement learning models (QL/GQL) and control logical models 
(ClockS/RandS) cannot reproduce monkey behavior. Models combining RL and 
task structure information (GQLSB2β;SBnoA2β;GQLSB) can. 

Khamassi et al. 2014 Cerebral Cortex 



Behavioral shifts found by difference in 

model’s optimized exploration parameters 

Example session All sessions 

Khamassi et al. 2014 Cerebral Cortex 



Increases in LPFC choice selectivity 

follow changes in the model’s optimized 

exploration parameter 

Khamassi et al. 2014 Cerebral Cortex 



Higher mutual information between 

monkey choice and LPFC activity than 

with dACC activity 

Khamassi et al. 2014 Cerebral Cortex 

Subset of LPFC neurons with high mutual information (MI) with choice. 



Single-unit correlates of model variables 

Khamassi et al. 2014 Cerebral Cortex 

 

 

 

 

Q = Q-value 

δ = reward prediction error 

U = outcome uncertainty 



Multiplexing in single-unit activity 

Khamassi et al. 2014 Cerebral Cortex 

LPFC neurons with activity correlated with negative prediction error at the 
time of the feedback show an increase in delay choice selectivity at the next 
trial. 

Response to errors 
during search 

Increase in choice 
selectivity during repetition 



Contribution to activity variance 
PCA Analysis on regression coefficient of model variables 

Khamassi et al. 2014 Cerebral Cortex 

Before feedback, outcome uncertainty (U) dominates in dACC, while more 
integrated with Q-values in LPFC. 

After feedback, earlier correlates of prediction error in dACC than in LPFC. 

early FB late FB 



• dACC is in an appropriate position to monitore feedback and to modulate 
learning parameters that could influence decision-making in LPFC (meta-
learning).  

• LPFC single-unit activity was more tightly related to monkey choices, and 
choice selectivity varied according to changes in the exploration 
parameter. 

• dACC activity more dominantly tracked outcome uncertainty before the 
feedback, and prediction errors in the early-feedback epoch. 

• Such a pluridisciplinary approach can contribute both to a better 
understanding of the brain and to the design of algorithms for 
autonomous decision-making in robots. 

Summary 
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MEDIAL AND LATERAL PREFONTAL 
CORTEX 

• Anatomy figure with ACC and LPFC. 



Frontal cortex activity related to 
exploration/exploitation 



PREVIOUS RESULTS 

• Different ACC subpopulations of neurons are 

selective to SEARCH and REPETITION periods. 

(Quilodran et al., 2008) 

 

Methods 

 

 

 



Reaction times 

 

 

Results 

 

 

Model-based analysis of monkey 
behavioral data 



Model-based 

analysis of 

behavior 

 

75% similarity 

(likelihood=0.6) 

Model-based analysis of monkey 
behavioral data 

Khamassi et al. (2014) Cerebral Cortex 

 

 

Model-based analyses 

 

 



Activity variation between 
SEARCH and REPEAT periods 

Global decrease of activity during the repetition period, and increase 

in spatial selectivity, as predicted by β* in the model 

 

 

Results 

 

 



Model-based analysis of neuronal 
data 

Action value neuron Negative RPE neuron 

Positive RPE neuron β* neuron 

 

 

Results 

 

 



Predicting monkeys’ choices 

The RL model needs a reset mechanism at the beginning of each new 

problem to reproduce monkey behavior = knowledge about task structure 



Model-based analysis of neuronal 
data 

Negative RPE 

neuron 

Positive RPE 

neuron 

U neuron Opposite U 

neuron 

SEARCH/REPEAT

neuron 

SEARCH/REPEAT 

neuron 

Khamassi et al. (2014) Cerebral Cortex 

 

 

Model-based analyses 

 

 



Model-based analysis of neuronal 
data 
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Results 

 

 



Integration of different model variables 
according to PCA analysis 

β* is more integrated with action values in LPFC than in 

ACC 

neurons’ 

firing 

rate 

 

 

f1=a*Q4+b*RPE+c*MV+.. 

f2=d*Q4+e*RPE+f*MV+.. 

… 

 

Principal Component 

Analysis (PCA) 

 

 

Results 

 

 



(Brief) sketch of robotic implementations 

Reproduction of monkey performance and behavioral properties. Additional 
experiments to predict how monkeys learn the task structure of Emmanuel 
Procyk’s task (Khamassi et al. 2011 Frontiers in Neurorobotics). 



• In the previous task, monkeys and the model a priori 

‘know’ that PCC means a reset of exploration rate 

and action values. 

• Here, we want the iCub robot to learn it by itself. 

Meta-learning applied to Human-
Robot Interaction 

 

 

 

Robotics 

 



Computational model 

β*: feedback history 

used to tune β 



Robotic arm 

 

 

Results 

 

 

video 



Robotic arm 

 

 

 

Meta-Learning 

 



Reproduction of the global properties of monkey performance in the PS task. 

Computational model simulation 

 

 

Results 

 

 



 

 

 

Robotics 

 

Meta-learning applied to Human-
Robot Interaction 

Reproduction of the global properties of monkey performance in the PS task. 



Simulation on the model on a 
probabilistic task (Amiez 2006) 

 

 

Results 

 

 



 

 

 

Robotics 

 

Meta-learning applied to Human-
Robot Interaction 

Khamassi et al. (2011) Frontiers in Neurorobotics 



Meta-learning applied to Human-
Robot Interaction 

Go signal 

Error 

Wooden board Reward Choice 

Human’s hands Cheating Cheating 

 

 

 

Robotics 

 



 

 

 

Robotics 

 

meta-value(i)  meta-value(i) + α’. Δ[averageReward] 

Threshold 

Meta-learning applied to Human-
Robot Interaction 



PERSPECTIVES 

 Approche modélisation utile pour formaliser plus 
précisément la fonction de groupes de neurones 

 Notre modèle propose un mécanisme pour intégrer RL 
et TM dans ACC 

 Pour aller plus loin, il faudrait modéliser cette 
dynamique de populations avec recurrent neural nets 

Cortical laminar structure and Cx-Cx connectivity 


