Global Challenges in New Build Applications
Status of AP1000 Projects

Mike Corletti
Director, UK AP1000 Technical Integration and Licensing
June 2, 2016
AP1000 Plant – Key Attributes

Proven Technology and Innovative Passive Safety Systems

Passive safety replaces mechanical and electrical systems – harnesses natural forces like gravity, convection, and condensation to achieve safe shutdown.

Delivery Certainty
Standard design, experience from current projects and modular construction enable “n-th of a kind” delivery performance.

Regulatory Certainty
Reviewed by multiple countries; first Generation III+ reactor to receive design certification from the U.S. NRC.
AP1000 Plant: Safe, Simple and Standardized

• **Passive safety** replaces mechanical and electrical systems – harnesses natural forces like gravity, convection and condensation to achieve safe shutdown

• **Strong licensing pedigree** based on reviews in multiple countries; first and only Generation III+ reactor to receive design certification from the U.S. NRC

• **Simplified design and modular construction** provide a plant that is easier and less expensive to build, operate and maintain
Passive Safety Through Proven Technology

Passive Safety-Related Systems
- Use “passive” processes only, no active pumps, diesels,
- One-time alignment of valves
- No support systems required after actuation
- Greatly reduced dependency on operator actions

Active Defense in Depth-Related Systems
- Reliably support normal operation
- Redundant equipment powered by onsite diesels
- Minimize challenges to passive safety systems
- Not necessary to mitigate design basis accidents

Severe accident scenario effects are mitigated by in-vessel retention of the melted fuel

The **AP1000** plant is designed to reduce or eliminate the chances of a core meltdown and explosion in situations where the plant experiences a total loss of power, similar to the accident at Fukushima.
The AP1000 PWR: Designed for Greater Project Certainty and Shorter Schedule

Modular construction means more work done in parallel

Factory production of modules

Transport Modules

On-site module assembly

Plant Operation

Plant Order

Site Survey and Preparation

Site Construction

Construction and module assembly

Shorter schedule – increased safety – improved quality

Photos © Sanmen Nuclear Power Company; Shandong Nuclear Power Company, Ltd; South Carolina Electric & Gas Company and Georgia Power Company. All rights reserved.
AP1000 Plant Modular Construction
An Innovative Approach Unique in our Industry

Improved Quality Control and Efficiency
Reduced Construction Schedule and Optimized Costs
Eight AP1000 units under construction
 – Four units in China (Sanmen and Haiyang)
 – Four units in the United States (Vogtle and V.C. Summer)

Establishing delivery improvements from eight units worth of experience
Sanmen Site Progress: Time Lapse View 2009 to 2016

Photos © Sanmen Nuclear Power Company Ltd. All Rights Reserved
China Projects Recent Achievements

- Completed four Reactor Coolant Pump (RCP) installations at Sanmen 1 (fourth completed on March 1)
- First two RCP installations completed at Haiyang 1 on March 23 and 25; second set of RCPs delivered April 5 and installed on April 26
- Completed Cold Hydro Test at Sanmen 1 on May 26
The Path to Completion:
Next Milestones for Sanmen and Haiyang

- RCP Deliveries/Installations
- Cold Hydro Test
- Hot Functional Test
- Fuel Load
- 100% Power Operation

Photos © Sanmen Nuclear Power Company Ltd. All rights reserved
U.S. Projects Updates

Vogtle Unit 3 Containment – March 2016

Vogtle 4 Turbine Building – February 2016

V.C. Summer 3 Shield Building – February 2016

V.C. Summer Site – Fall 2015

Photos © Georgia Power Company, South Carolina Electric & Gas Company. All rights reserved.
U.S. Projects Recent Achievements

• V.C. Summer
 ➢ Unit 2 Shield Building layer F1 wedge concrete placed in February
 ➢ Unit 2 Annex Building – concrete placed for two of three base slab sections in March
 ➢ Unit 3 CA20 Part 1 lift and set completed in March

• Vogtle
 ➢ Unit 3 Annex Building concrete placed in March
 ➢ Unit 3 concrete fill of CA20 module completed in March
 ➢ Unit 3 Shield Building concrete fill inside panels completed in March
EUR confirms the AP1000 plant can be **successfully deployed** in Europe (May 2007)

AP1000 plant amended design **approved** by NRC (December 2011)

UK regulators grant **Interim Design approval** (December 2011) – **Final Approval** planned March 2017

China licencing activities on-track, with **Final Safety Analysis Report** (FSAR) submitted to customer (2012)

Combined construction and operating licences (COL) approved for **Vogtle 3&4** site (February 2012) and **V.C. Summer 2&3** site (March 2012)

Canada (CNSC) Phase 2 Pre-Licence (2013)
Progress of Moorside Project: Adapting a Proven Delivery Model

- Maximise standardisation/minimise customisation of the AP1000 plant design to achieve delivery certainty
- Project adaptation in progress
 - Vogtle reference plant
 - Regulatory-driven change
 - 50 Hz incorporation
 - EU/UK/owner/site requirements
 - Product/delivery improvements from eight units worth of experience
- Generic Design Assessment (GDA)
 - Intensive effort focused on reaching convergence and closing out GDA issues
 - Scheduled to receive Design Acceptance Confirmation/Statement of Design Acceptability by March 2017 from HMG
QUESTIONS???