What can synesthesia teach us about sound symbolism?

Katie Bankieris₁ & Jools Simner₂

kbankieris@bcs.rochester.edu, j.simner@ed.ac.uk 1-University of Rochester, 2-University of Edinburgh

WHAT CAN SYNESTHESIA TEACH US ABOUT SOUND SYMBOLISM?

LINGUISTICS BACKGROUND

LINGUISTICS BACKGROUND

Arbitrariness

LINGUISTICS BACKGROUND

Arbitrariness

dog

cane

chien

ferro

kelb

Crossmodal correspondences between word form and meaning

Crossmodal correspondences between word form and meaning

'kiki'

'bouba'

(e.g., Maurer, Pathman, & Mondloch, 2006, Brown, Black, & Horowitz, 1955; DeFife, Nygaard, & Namy, 2014; Klank, Huang, & Johnson, 1971, Köhler, 1929; Kunihira, 1971)

Crossmodal correspondences between word form and meaning

'kiki'

'bouba'

(e.g., Maurer, Pathman, & Mondloch, 2006, Brown, Black, & Horowitz, 1955; DeFife, Nygaard, & Namy, 2014; Klank, Huang, & Johnson, 1971, Köhler, 1929; Kunihira, 1971)

Crossmodal correspondences between word form and meaning

Crossmodal correspondences between word form and meaning

Albanian

Mandarin

Dutch

Romanian

Gujarati

Tamil

Indonesian

Yoruba

Yoruba

Korean

(DeFife, Nygaard, & Namy, in prep; Kunihira, 1971; Nygaard, Cook, & Namy, 2009)

Crossmodal correspondences between word form and meaning

- increases learnability for adults and children (e.g., Nygaard, Cook, & Namy, 2009; Imai et al., 2008)
- increases online language processing speed (Farmer, Christiansen, & Monaghan, 2006)

Crossmodal correspondences between word form and meaning

What are the cognitive mechanisms?

Crossmodal correspondences between word form and meaning

- What are the cognitive mechanisms?
- Do crossmodal neural connections between sensory areas underlie sound symbolism?

WHAT CAN SYNESTHESIA TEACH US ABOUT SOUND SYMBOLISM?

sensory or cognitive stimuli consistently cause additional sensory or cognitive experiences

ABCDEFGHIJKLMN OPQRSTUVWXYZ

 nonsynesthetes' implicit associations match underlying patterns of synesthetes' explicit associations (e.g., Simner et al., 2005; Ward et al., 2006)

- nonsynesthetes' implicit associations match underlying patterns of synesthetes' explicit associations (e.g., Simner et al., 2005; Ward et al., 2006)
- arises from additional and/or uninhibited neural connections (see Rouw, Scholte, & Colizoli, 2011 for a review)

- nonsynesthetes' implicit associations match underlying patterns of synesthetes' explicit associations (e.g., Simner et al., 2005; Ward et al., 2006)
- arises from additional and/or uninhibited neural connections (see Rouw, Scholte, & Colizoli, 2011 for a review)

Synesthesia is an exaggerated form of normal crossmodal processing? (e.g., Brang et al., 2011)

WHAT CAN SYNESTHESIA TEACH US ABOUT SOUND SYMBOLISM?

RESEARCH QUESTIONS

Is there a link between synesthesia and sound symbolism?

- 1. Are synesthetes more sensitive to sound symbolism than nonsynesthetes?
- 2. Is sound symbolism found within synesthetic associations?

RESEARCH QUESTIONS

Is there a link between synesthesia and sound symbolism?

- 1. Are synesthetes more sensitive to sound symbolism than nonsynesthetes?
- 2. Is sound symbolism found within synesthetic associations?

Auditory 2AFC task with 400 foreign words

(DeFife, Nygaard, & Namy, in prep)

- 10 languages
 - Albanian, Dutch, Gujarati, Indonesian, Korean,
 Mandarin, Romanian, Tamil, Turkish, and Yoruba
- 4 antonym pairs
 - big/small, bright/dark, up/down, loud/quiet

19 grapheme-color synesthetes

57 controls

Mixed-effects logistic regression

Mean accuracy ~ group * domain

synesthete control

BigSmall LoudQuiet DownUp BrightDark

INTERFERENCE

Significant group effect $\beta = .05$, z = 2.19, $\rho < .05$

INTERFERENCE

RESEARCH QUESTIONS

Is there a link between synesthesia and sound symbolism?

- 1. Are synesthetes more sensitive to sound symbolism than nonsynesthetes? Yes!
- 2. Is sound symbolism found within synesthetic associations?

Is there a link between synesthesia and sound symbolism?

- 1. Are synesthetes more sensitive to sound symbolism than nonsynesthetes? Yes!
- 2. Is sound symbolism found within synesthetic associations?

Case study of a lexical-gustatory synesthete

479 word-flavor pairs

TRIGGER WORD cavalry

<u>FLAVOR</u>

dark chocolate

TRIGGER WORD

cavalry

<u>FLAVOR</u>

dark chocolate

Coded:

- vowel
 - height
 - backness
 - roundedness
- consonant
 - manner of articulation
 - place of articulation
 - voicing
- consonants vs. vowels

TRIGGER WORD

cavalry

<u>FLAVOR</u>

dark chocolate

Coded:

- vowel
 - height
 - backness
 - roundedness
- consonant
 - manner of articulation
 - place of articulation
 - voicing
- consonants vs. vowels

TRIGGER WORD

Consonant	Voicing

TRIGGER WORD

Consonant	Voicing
k	
V	
I	
r	

TRIGGER WORD

Consonant	Voicing
k	unvoiced
v	voiced
I	voiced
r	voiced

TRIGGER WORD

cavalry – /kæ.vəl.ri/

Consonant	Voicing
k	unvoiced
v	voiced
I	voiced
r	voiced

(total voiced * 1) + (total unvoiced * -1)
total consonants

TRIGGER WORD

Consonant	Voicing
k	unvoiced
v	voiced
I	voiced
r	voiced

$$\frac{(3*1) + (1*-1)}{4} = .5$$

TRIGGER WORD

cavalry

<u>FLAVOR</u>

dark chocolate

Coded:

- vowel
 - height
 - backness
 - roundedness
- consonant
 - manner of articulation
 - place of articulation
 - voicing
- consonants vs. vowels

TRIGGER WORD

cavalry

Coded:

- vowel
 - height
 - backness
 - roundedness
- consonant
 - manner of articulation
 - place of articulation
 - voicing
- consonants vs. vowels

<u>FLAVOR</u> dark chocolate

TRIGGER WORD

cavalry

Coded:

- vowel
 - height
 - backness
 - roundedness
- consonant
 - manner of articulation
 - place of articulation
 - voicing
- consonants vs. vowels

FLAVOR dark chocolate

TRIGGER WORD

cavalry

<u>FLAVOR</u>

dark chocolate

Coded:

- vowel
 - height
 - backness
 - roundedness
- consonant
 - manner of articulation
 - place of articulation
 - voicing
- consonants vs. vowels

5 step-wise linear regression models

EXPERIMENT 2 RESULTS

TRIGGER WORD cavalry

FLAVOR dark chocolate

5 step-wise linear regression models

EXPERIMENT 2 RESULTS

Phonemic trigger	Taste
high vowels*	sour
obstruents	umami

* matches nonsynesthetes' associations

Is there a link between synesthesia and sound symbolism?

- 1. Are synesthetes more sensitive to sound symbolism than nonsynesthetes? Yes!
- 2. Is sound symbolism found within synesthetic associations? Yes!

Is there a link between synesthesia and sound symbolism?

- 1. Are synesthetes more sensitive to sound symbolism than nonsynesthetes? Yes!
- 2. Is sound symbolism found within synesthetic associations? Yes!

Is there a link between synesthesia and sound symbolism? Yes!

Is there a link between synesthesia and sound symbolism? Yes!

Synesthesia and sound symbolism may emerge from common crossmodal mechanisms

left superior parietal cortex

CONCLUSIONS & FUTURE DIRECTIONS

Synesthesia is a useful tool for investigating general cognition

- -Statistical learning
- -Ideal cue integration

THANKS!

Jools Simner

Dick Aslin

SUPPLEMENTARY SLIDES

SAUSAGE

	MT1	MT2	MT3
bitter	1	2	1
salty	4	1	3
savor y	4	2	3
sour	1	1	1
sweet	1	3	1

Flavor profile	
bitter	-0.57
salty	0.85
savory	0.7
sour	-0.58
sweet	-0.04

Normalize by individual participants' mean and SD

Take overall mean

'acid' warheads

Proportions	
close	.5
mid	0
open	.5
back	0
central	1
front	1
rounde d	0

Proportions	
labial	0
coronal	1
dorsal	0
glottal	0
sonorant	0
voiced	.5
vowel	.5

Flavor profile	
bitter	-0.15
salty	-0.38
savory	-0.33
sour	1.09
sweet	0.46

CONTROL TASK

WAIS vocabulary subtest

- Define 35 words via telephone interview
- Each response scored 0-2 for correctness and completeness of definition
- Raw scores converted to scaled scores based on age (Wechsler, 1981)

RESULTS: CONTROL TASK

