

	Tra Ł	ditional clinical vie pacterial pathogen	ews on icity		
	IPI*	Which bacteria?	Colonized	Causes disease :	
	<0.1	Commensals (=microbiota)	100%	Rarely: Immuno- compromized, severe dysbiosis	
	0.1-0.3	Potential pathogenic microorganisms (PPMs) E.g. Streptococci, Staphylococci	20-80%	Sometimes: Specific circumstan- ces / strains only	
	0.8-1.0	Pathogens E.g. STI pathogens	~0%	(Almost) always	
	* Intrinisic pathogenicity index = # diseased/# colonized = 0-1				
WORLD-CLASS RESEARCH TARGETING INFECTIOUS DISEASES					

VMB biofilm

Vaginal biofilm research just starting

- Initial data with FISH probes:
 - Vaginal biopsies, vaginal smears, and urine sediments (Swidsinski 2005, 2010; Machado 2014; Hardy 2015)
 - Endometrial/fallopian tube samples (Swidsinski 2013)
 - In-vitro models (Patterson 2010, Cerca lab 2013)

Traditional BV treatment

- First line tx (oral/vaginal metronidazole or clindamycin):
 - Cure rate 80% but recurrence rate 50+% within 6 months
 - Biofilm damaged and suppressed during tx but reactivated
- Cure rate:

UVERPOOL

- Improved by longer first-line tx duration
- Not improved by first line combinations or adding azithromycin, moxifloxacin, or partner treatment
- <u>Recurrence rate</u>:

LIVERPOOL

Reduced by prophylactic use of first line drugs, hormonal contraception, male circumcision

Clinical studies by Sobel J, Swebke J, Bradshaw C, McClelland RS, Marrazzo J, Verstraelen H, Swidsinski A and others.

WORLD-CLASS RE

Activit against biofilm (McMillan, 2011) and to restore VMB Activit against biofilm (McMillan, 2011) and to restore VMB Many tested with modest effects in short-term and disappointing effects in long-term →not recommended Use Againal pre/probiotics, ongoing RCTs: Activit-V (Osel, USA): Cohen *et al* in USA Gynophilus (Probionov, France) and Ecologic Femi (Winclove, Netherlands): van de Wijgert *et al* in Rwanda Efficacy may depend on endogenous microbiota Micro SEL

Biofilm disruption

- <u>General strategies</u>: Physical removal, long-term antibiotics, chemical biofilm disruption (targeting structural biofilm components, quorum sensing, attachment and dispersal mechanisms)
- In vaginal dysbiosis:
 - In clinical use: boric acid (Reichman, 2009), add EDTA
 - Tested in women: antiseptic octenidine (Swidsinski, 2014) \rightarrow not effective
 - Experimental BV: DNAse (Hymes, 2013), retrocyclin (Eade 2013)
 - Experimental PPMs: lysins, quorum sensing inhibitors
 - BUT: might cause epithelial damage → increase HIV acquisition, cell clump embolism, re-activation of infection
- Lactic acid and disinfectants do not disrupt biofilm

LIVERPOOL

Conceptual VMB dysbiosis framework

- <u>BV with high loads of planktonic bacteria but no biofilm</u>

 G. vaginalis common but not required
 - Easy to treat, lower recurrence
- 2. BV with biofilm
 - G. vaginalis required?
 - Difficult to treat, high recurrence
- 3. High loads of PPMs
 - Highly inflammatory, severe sequelae
 - PPM biofilm present or not
 - With or without BV
 - PPM-specific treatment required

LIVERPOOL

UVERPOOL

Diagnostic implications

Differentiate dysbiosis types

LIVERPOOL

- Differentiate from candidiasis, trichomoniasis, cervical STIs
- If recurrent or severe: need diagnostics to determine if BV and/or PPM biofilm is present

Treatment implications

- If planktonic BV: use BV antibiotic tx
- If planktonic PPMs: use targeted PPM antibiotic tx
- If BV and/or PPM biofilm: disrupt biofilm and use antibiotic tx
- If candidiasis: use antifungal tx
- If trichomoniasis/cervical STI: use pathogen-specific antibiotic tx
- If multiple: use combinations
- In all cases: restore optimal VMB after tx using pre/probiotics, topical/systemic hormones, and/or lactic acid, consider partner treatment

Research priorities

- Increase understanding of:
 - G. vaginalis: genotypes, role in BV biofilm
 - L. iners: how much can be tolerated, role in BV biofilm
 - Role of other taxa in BV biofilm
 - Interactions PPMs and VMB, role in BV and/or PPM biofilm
 - Associations VMB dysbiosis types and clinical outcomes
 - Much VMB dysbiosis is asymptomatic but is still associated with adverse outcomes: When to screen and intervene?
- Develop better/more relevant diagnostics
- Develop better biofilm disruption
- Develop better pre/probiotics to restore optimal VMB
- Continue to test (combinations of) interventions to optimize the VMB and prevent adverse outcomes
- LIVERPOOL

UIVERPOOL