MULTI-OBJECTIVE OPTIMIZATION FOR LONG-TERM NETWORK-LEVEL RENEWAL PLANNING OF BRIDGES IN IOWA: PHASE II PROGRESS REPORT
IDS Program Objectives

- Comprehensive analysis of Iowa bridge inventory and condition data.
- Development of deterioration models to predict bridge performance based on historical Iowa NBI data.
- Development of a risk-based prioritization model to rank bridges based on both the likelihood of failure and consequence of failure, and then assign priority indices to indicate relative urgency of preservation actions.
- Development of 20-year optimal preservation plans that maximize system-wide performance and minimize risks under a range of budget and performance target scenarios.
- Investigating trade-offs between funding levels and system-wide performance and risk levels.
Bridge Type Groupings

<table>
<thead>
<tr>
<th>Group ID</th>
<th>Bridge type (NBI Items 43A/43B)</th>
<th>Route Type (NBI Item 5B)</th>
<th>Type of Service on bridge (NBI Item 42A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group #1</td>
<td>Continuous Steel</td>
<td>Interstate</td>
<td>Mainline Highway only</td>
</tr>
<tr>
<td>Group #2</td>
<td>Prestressed Girder</td>
<td>Interstate</td>
<td>Mainline Highway only</td>
</tr>
<tr>
<td>Group #3</td>
<td>Continuous Steel</td>
<td>Interstate</td>
<td>Overpass at Interchange</td>
</tr>
<tr>
<td>Group #4</td>
<td>Prestressed Girder</td>
<td>Interstate</td>
<td>Overpass at Interchange</td>
</tr>
<tr>
<td>Group #5</td>
<td>Continuous Slab</td>
<td>Interstate</td>
<td>Mainline/Overpass at interchange</td>
</tr>
<tr>
<td>Group #6</td>
<td>Simple span Steel</td>
<td>All Routes</td>
<td>All Types</td>
</tr>
<tr>
<td>Group #7</td>
<td>Continuous Steel</td>
<td>U.S. or State</td>
<td>All Types</td>
</tr>
<tr>
<td>Group #8</td>
<td>Prestressed Girder</td>
<td>U.S. or State</td>
<td>All Types</td>
</tr>
<tr>
<td>Group #9</td>
<td>Simple Span Slab</td>
<td>All Routes</td>
<td>All Types</td>
</tr>
<tr>
<td>Group #10</td>
<td>Continuous Slab</td>
<td>U.S. or State</td>
<td>All Types</td>
</tr>
<tr>
<td>Group #11</td>
<td>Two Girder Steel</td>
<td>All Routes</td>
<td>All Types</td>
</tr>
<tr>
<td>Group #12</td>
<td>Continuous/Simple Span Steel</td>
<td>County or City</td>
<td>All Type</td>
</tr>
<tr>
<td>Group #13</td>
<td>Prestressed Girder</td>
<td>County or City</td>
<td>All Types</td>
</tr>
</tbody>
</table>
Bridge Evaluation

- 6 different preservation methods using 16 different scenarios
 - Concrete Overlay
 - Deck Repair
 - Deck Replacement
 - Bridge Replacement
 - Bridge Widening
 - Prestressed Beam End Repair
<table>
<thead>
<tr>
<th>Method</th>
<th>Unit Cost</th>
<th>Maximum Total Budget</th>
<th>Condition Improvement</th>
<th>Material (Item 43A)</th>
<th>Deck Condition (Item 58)</th>
<th>Superstructure Condition (Item 59)</th>
<th>Substructure Condition (Item 60)</th>
<th>Operating Rating (Item 61)</th>
<th>Wearing Surface (Item 108A)</th>
<th>Deck Protection (Item 108C)</th>
<th>Deck Geometry (Item 68)</th>
<th>Condition Index - S1 Agency Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Slump Concrete Overlay</td>
<td>$50/sq. ft.</td>
<td>15%</td>
<td>3 point increase in Deck with a maximum deck condition rating of 7, increase superstructure and substructure by 1 point with a maximum condition rating of 7.</td>
<td>1,2,3,4,5</td>
<td>4.5</td>
<td>>3</td>
<td>>3</td>
<td>>32.4 tons</td>
<td>4</td>
<td>0.1,2</td>
<td>>3</td>
<td>>30</td>
</tr>
<tr>
<td>Low Slump Concrete Overlay</td>
<td>$50/sq. ft.</td>
<td>15%</td>
<td>3 point increase in Deck with a maximum deck condition rating of 7, increase superstructure and substructure by 1 point with a maximum condition rating of 7.</td>
<td>1,2,3,4,5</td>
<td>4,5,6</td>
<td>>5</td>
<td>>5</td>
<td>>32.4 tons</td>
<td>1</td>
<td>0</td>
<td>>3</td>
<td>>30</td>
</tr>
<tr>
<td>Low Slump Concrete Overlay</td>
<td>$50/sq. ft.</td>
<td>15%</td>
<td>3 point increase in Deck with a maximum deck condition rating of 7, increase superstructure and substructure by 1 point with a maximum condition rating of 7.</td>
<td>1,2,3,4,5</td>
<td>5</td>
<td>>4</td>
<td>>4</td>
<td>>32.4 tons</td>
<td>1</td>
<td>1.2</td>
<td>>3</td>
<td>>25</td>
</tr>
<tr>
<td>Deck Replacement (Interstate)</td>
<td>$115/sq. ft.</td>
<td>25%</td>
<td>Deck to condition 8, Superstructure to condition 7, Substructure to condition 7</td>
<td>1,2,3,4,5</td>
<td><=5</td>
<td>>=5</td>
<td>>=5</td>
<td>>32.4 tons</td>
<td>1, 4</td>
<td>0.1,2</td>
<td>>4</td>
<td>>20</td>
</tr>
<tr>
<td>Deck Replacement (Non-Interstate)</td>
<td>$115/sq. ft.</td>
<td>25%</td>
<td>Deck to condition 8, Superstructure to condition 7, Substructure to condition 7</td>
<td>1,2,3,4,5</td>
<td><=5</td>
<td>>=5</td>
<td>>=5</td>
<td>>32.4 tons</td>
<td>1, 4</td>
<td>0.1,2</td>
<td>>3</td>
<td>>20</td>
</tr>
<tr>
<td>Deck Repair</td>
<td>$25/sq. ft.</td>
<td>1%</td>
<td>2 points increase in Deck</td>
<td>1,2,3,4,5</td>
<td>4.5</td>
<td>>4</td>
<td>>4</td>
<td>any</td>
<td>4</td>
<td>0.1</td>
<td>any</td>
<td>>25</td>
</tr>
<tr>
<td>Bridge Replacement (non-Interstate)</td>
<td>$325/sq. ft.</td>
<td>75%</td>
<td>New</td>
<td>1,2,3,4,5</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td><35</td>
</tr>
<tr>
<td>Bridge Replacement (Interstate)</td>
<td>$275/sq. ft.</td>
<td>75%</td>
<td>New</td>
<td>1,2,3,4,5</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td><35</td>
</tr>
<tr>
<td>Bridge Replacement (non-Interstate)</td>
<td>$275/sq. ft.</td>
<td>75%</td>
<td>New</td>
<td>1,2,3,4,5</td>
<td>any</td>
<td><5</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td><35</td>
</tr>
<tr>
<td>Bridge Replacement (Interstate)</td>
<td>$275/sq. ft.</td>
<td>75%</td>
<td>New</td>
<td>1,2,3,4,5</td>
<td>any</td>
<td>any</td>
<td><5</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td><35</td>
</tr>
<tr>
<td>Bridge Replacement (non-Interstate)</td>
<td>$275/sq. ft.</td>
<td>75%</td>
<td>New</td>
<td>1,2,3,4,5</td>
<td>any</td>
<td>any</td>
<td><5</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td><35</td>
</tr>
<tr>
<td>Bridge Replacement (Interstate)</td>
<td>$275/sq. ft.</td>
<td>75%</td>
<td>New</td>
<td>1,2,3,4,5</td>
<td><5</td>
<td><=7</td>
<td><=7</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td><35</td>
</tr>
<tr>
<td>Bridge Widening</td>
<td>$1000/sq. ft.</td>
<td>5%</td>
<td>2 point increase in Deck with a maximum rating of 8, Superstructure to condition 7, Substructure to condition 7</td>
<td>3,4,5</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>32.4 tons</td>
<td>any</td>
<td>any</td>
<td>2</td>
<td>>25</td>
</tr>
<tr>
<td>Prestressed Beam End Repair</td>
<td>$1500/ beam end</td>
<td>5%</td>
<td>Superstructure increase 2 points to a maximum of 7, Substructure to condition 7</td>
<td>5</td>
<td>>4</td>
<td><5</td>
<td>>4</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td>>30</td>
</tr>
</tbody>
</table>
Deterioration Factors

- Age
- ADT
- ADTT
- Length of Maximum Span
- Number of Lanes
- Deck Protection (wearing surface)
- Deck Protection (Reinforcing Steel)
- Design Load
- Skew Angle
Risk Factors

- Highway System (NHS vs. Non-NHS) - 25%
- Functional Class of Route - 30%
- Detour Length - 15%
- Type of Service Under Bridge - 5%
- ADT - 25%
Programming Budget

- Multiple budget scenarios can be assessed.
- Scenarios can have limits on individual maintenance methods.
- Targets for overall inventory condition can be based on agencies' individual criteria.
- The program output should be viewed as an overall system need or shortfall.
- The program output shows what the most efficient use of program dollars should be based on work types.
Program Scenarios

- $70 million per year
- $100 million per year
- $100-$120-$140-$160 million stepped every 5 years
- $100 million min. to $250 million max.
- No limit per year with condition index threshold of 42

Budget limit examples:

- 40% of budget for replacements
- 60% of budget for replacements
- 75% of budget for replacements
- No limit on replacements

Large Project Limits:

- Any project over $5 million
- $120 million annual limit
- No annual budget limit
- Different project criteria
IDS Program vs. Iowa Program

- IDS proposed 1632 projects over 20 years from 2014 thru 2033
- 384 of the 1632 projects are already programmed or were completed in 2011, 2012, or 2013
- 142 of the 384 are in the first 5 years of IDS’s program
- 854 of the 1632 projects have a proposed work item in our Structure Inventory and Inspection Management System
Do Nothing for 20 Years

Change in Condition Index

Change in Structurally Deficient Bridges
70 Mill. Annual Budget

Change in Condition Index

Change in SD Bridges

Dollars Spent of 70 mill. Budget Allowance

Dollars Spent of 120 mill. For Large Projects
Over a 21 Year Period
Over a 21 Year Period
Change in Condition Index

Change in Structurally Deficient Bridges

Budget Spent Annually

Large Project Budget Spent Annually

$100-$120-$140-$160 Budget Scenario

$120-$140-$160 Budget Scenario
Over a 21 Year Period
Over a 21 Year Period
$2,760,000,000 Max.
Total/Scenario
Questions?

Scott Neubauer, P.E.
Iowa D.O.T.
Bridge Maintenance and Inspection
Office of Bridges and Structures
Scott.Neubauer@iowadot.us
515-239-1165