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Abstract 
Mathematics is the method that we use to describe the world around us, 

implementing the discoveries within physics, chemistry and other sciences in ways 
that make it possible to generate predictions of what we need, or wish, to know: 
international flight times and flight fuel requirements, bridge strength requirements, 
distances to nearby stars, storage life of a lube oil during certain conditions and 
turbine blade life. However since models are just models and not the truth itself, they 
vary in accuracy and are sometimes simply not right. Statistics is often used as a 
measure to follow-up and to quantify how well a model works for a particular purpose. 
However as has been shown over and over again statistics, unless used with caution 
and insight, can provide inconclusive, useless or even misleading results. Statistical 
analysis also often suffers from incomplete data and biased presumptions. This 
paper describes examples of what can happen when statistics is applied to a gas 
turbine blade with multiple failure modes. In particular, the result of different ways to 
model infant failure is studied with the goal to understand if certain failure distribution 
data found on the Internet can be reproduced with physically sound assumptions, 
thereby making them understandable and useful for design improvements. The paper 
shows some necessary factors to consider in particular when the presence of infant 
or early wear-out failures in the underlying data is suspected. 
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Figure 1: Weibull 2-parameter failure frequency distribution 

0 NOMENCLATURE AND DEFINITIONS 
 

CPD  Combined Probability Distribution - the probability 
  distribution resulting from combining multiple failure modes 
  acting on a part into a single distribution using a weakest 
  link assumption 
Failure  Any state resulting in a part being removed from service 
  before reaching its maximum allowable service life 
Failure data  Data describing the condition of equipment related to a 
  failure 
Failure mechanism  A degradation mechanism that can cause a part to fail 
Failure mode  Effect which caused the part to fail 
FMEA  Failure Mode and Effects Analysis 
MTBF  Mean Time Between Failure 
Prognostics  Structured methodology to predict progression of failure 
  modes in parts 
R quality parameter  Relative least squares parameter used as convergence 
  criterion for SWD calculation. Relative means that each 
  least squares deviation is divided by the target value, 
  thereby increasing the importance of low probabilities. 
Scale parameter  Second Weibull parameter determining the “time” needed 
  to reach a certain probability 
Shape parameter  First Weibull parameter determining the rate of change in 
  probability as function of “time” 
SWD  Suggested Weibull Distribution – target function used to 
  identify a Weibull distribution representing the combined 
  part probability distribution CPD 
T50%  Time to 50% failure probability – measure used in this 
  report to present the relative deterioration rate for the 
  different analyzed cases. T50% is used instead of MTBF 
  since it is less sensitive to time step length than MTBF and 
  is therefore much easier to work with. It will show similar 
  relative impact as MTBF but the absolute numbers will be 
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  different. The calculation of corresponding MTBF is left as 
  an exercise to the interested reader. 
“time”  Weibull input parameter. “time” is a quantifiable parameter 
  that is identical for all data in the analyzed dataset and is 
  used to measure service time and maintenance intervals. 
Weibull distribution  Statistical probability distribution. 
    The Weibull distribution was originally suggested as a 
    useful distribution for fatigue and failure data and has seen 
    extensive use. It exists in two distinct versions, the two-
    parameter and three-parameter Weibull distributions. In 
    this paper only the two-parameter Weibull distribution will 
    be applied. 
    Lambda – Failure frequency defined as the inverse MTBF: 

    MTBF = 1/  

1 INTRODUCTION 
In order to validate life predictions, and in particular prognostics life predictions, there 
is a desire to compare predictions with available service data. In practice service data 
is rarely collected primarily with this purpose. Furthermore, the data commonly 
consists not mainly by pure wear-out failures but a mixture of parts not passing 
acceptance criteria during status inspections, infant failures, maintenance errors, 
random failures, mixed human errors and complex multi-cause errors with many 
different root causes where the wear-out mechanisms considered by the prognostics 
methods may or may not have played a role. There is also a share of parts passing 
one or several cycles of operation with intermediate repairs, often with gaps in 
service and/or repair scope history documentation. Due to the complex nature of 
service data, these data will need careful processing and interpretation before they 
can be compared with the predictions. This paper presents a study carried out under 
the assumptions that Weibull analysis is an established method to analyze and 
interpret failure data and to predict future failures, that the variation in life of typical 
gas turbine wear-out failure mechanisms can be represented sufficiently well by 
Weibull distributions and that the failure modes of typical gas turbine blades can be 
ordered into a set of independent distributions with known asymptotic shape. The 
purpose of this study is to investigate a) the impact of operation and different 
operation history on failure distributions, b) the outcome of three different ways to 
model the impact of non-conforming parts on fleet data, and c) how the quality of 
statistical predictions can be estimated, all under the assumption that failure 
descriptions are missing or inconclusive. 
The work presented here is an extension of the work presented in GT2015-43572, 
[1]. 

2 CHALLENGES WITH SERVICE DATA AND MAIN WORK HYPOTHESIS 

In order to make good comparisons between the predicted and real condition of a 
part, there is a chain of data that has to be maintained. Ideally all data from full 
design specification, allowable design variability, expected failure modes, prognostics 
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descriptions of how damage will accumulate as function of operation, detailed data 
on how the equipment has been operated, detailed data of operating environment 
including weather as well as air quality, records on handling and any maintenance 
actions – or lack thereof – on not only the part itself but the equipment as a whole, 
previous repair and inspection data including variability in processes and probability 
of detection and as precise as possible records of any observations – expected or not 
– on the part is needed. In practice it is usually not possible to collect all this data, 
and in fact much of the data is only needed in certain situations. On the other hand, 
much of the data cannot be collected afterwards. Therefore, a “sufficiently good” 
process is necessary from the beginning that collects as much data as is “affordable” 
and “practical”. Standards such as ISO 14224 [2] and ISO 3977-9 [3] are intended to 
help analysts to collect data systematically in formats that can be shared with others 
and that will maximize usability of the data with reasonable effort. Methods of risk 
analysis such as FMEA and various root cause analysis methods can also implicitly 
be helpful due to their explicit or implicit requirements on data. Most of these 
methods are covered by multiple standards for the interested reader – however the 
standards tend to be application specific or adapted to national regulations. It is 
expected that many major companies use in-house, product and application specific, 
versions of the methods to ensure that specific quality requirements can be met. One 
example of a seemingly more general FMEA standard is IEC 60812, [3]. One of the 
driving forces behind this paper is to use statistical approaches to develop a better 
understanding of how much loss of data quality actually affects the desired 
comparison between theory and practice, with the goal to understand how knowledge 
can be extracted from small and fragmented data sets, and to understand how 
various gaps in data can best be bridged. The hypothesis behind the work is that 
each failure mode has a characteristic statistical shape that is determined by the 
underlying physical damage mechanisms, or a combination of shapes, each of which 
is representative for its development during one phase of its total development. Refer 
e.g. to the crack initiation and crack propagation phases that in sequence constitute a 
fatigue failure mode. If said hypothesis is valid then it should be possible to describe 
actual failure data reasonably well with a proper, physically based combination of 
failure modes. An important part of the knowledge generation is therefore to 
understand how phenomena like operation conditions and different types of failures 
will change the appearance of the resulting failure distribution. 

3 DESIGN CASE – THE PART TO BE STUDIED 

The subject of the study is a hypothetical air-cooled turbine blade closely resembling 
a real turbine blade in a Siemens gas turbine. The blade is assumed to have three 
independent wear-out failure modes that are dependent on the same “time” 
parameter x and have identical Weibull parameters at design conditions. In addition, 
a fourth infant failure mode is available to simulate the presence of a load-
independent infant failure mode in a certain fraction of the blade population. At non-
design conditions the prognostics algorithms will treat the different failure modes 
independently, resulting in different failure characteristics. If the failure modes are 
independent then it is assumed that the failure probability after time x can be 
described using a standard weakest link assumption, that is 
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 Pf(x) = 1 – i(1-Pf,i(x))   (1), 

 

where Pf,i(x) is the probability of failure due to failure mode i after time x. 

An investigation of characteristics of creep, oxidation and fatigue properties of gas 
turbine blade materials indicate that the Weibull shape parameter is fairly constant for 
a specific failure mechanism, and that the shape parameters for all three failure 
mechanisms are in the range of 3 – 7. In order to give a brief description of what 3 or 
7 means, a Weibull shape parameter of 3 means that a risk increase from 10% to 
20% probability of failure corresponds to a 28% increase in life. In contrast, with a 
Weibull shape parameter of 7, an increase from 10% to 20% probability of failure 
corresponds to only an 11% increase in life. For the purpose of this study it has been 
assumed that each of the three failure modes on the blade has a Weibull shape 
parameter of 3. Further, also for the purpose of this study, the scale parameter for all 
three failure modes has arbitrarily been assigned the value of 100000 at a known 
reference condition. These parameters do not correspond to any known Siemens gas 
turbine design of today. The characteristics of the prognostics algorithms have been 
taken from a real turbine blade and can therefore not be revealed in this paper. 
Finally, a blade set is assumed to consist of 50 blades. All these assumptions can 
have a considerable impact on the calculated numbers, and any conclusions and 
intended applications of this study will have to consider this fact. 

Calculating non-design point failure characteristics of the part is done in the following 
way: 

1. Using the prognostics algorithms, calculate the relative amount of accumulated 
damage xi for each individual failure mode after time x 

2. For each failure mode, calculate Pf,i(xi) and use (1) to calculate the probability 
of failure Pf(x) for the part as a whole 

3. Visualize the resulting probability distribution 

4 Use a relative least squares sum R together with graphical comparison to 
estimate the Weibull parameters of same distribution 

The least squares sum R = ((Pf(x)-Pest(x))/Pf(x))2 for all time steps x. It appears that 
by using the relative least squares R instead of a straightforward least squares the 
focus on the lower probability range, where one is normally most interested, will be 
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stronger. Judging whether a particular R value is good or bad has to consider the 
number of time steps and is really only used as a relative measure. 

4 SCOPE OF THE STUDY 

The purpose of this study is to contribute to the understanding of what kinds of efforts 
and skills are necessary in order to get reliable results out of investigations of service 
experiences. Specifically, the contributions have been limited to answering the 
following questions, under the assumptions described above and taking into account 
the outcome from the previous results reported in [1]: 

1. How will the failure distribution and T50% change if infant failures are 
 represented by an operation condition independent, statistically independent, 
 infant failure mode? 

2. How will failure distribution and T50% change if early failures are instead 
 represented as wear-out failure modes with a shorter characteristic life? 

3. Can the suggested failure distributions represent public internet data on gas 
 turbine blade characteristics sufficiently well? Are there any models that 
 appear less useful in this context? 

4. From a gas turbine plant maintenance perspective, how can the results be 
 used? 

5 IMPACT OF OPERATIONAL CHANGES ON FAILURE DISTRIBUTION 

The wear-out failure modes of the hypothetical blade are described by a Weibull 
distribution with parameters (3, 100000) at reference conditions, corresponding to 
21582 time units to 1% failure probability per individual failure mode. At non-design 
conditions the 100000 units of “time” will be consumed with different rates for each 
failure mode. As a consequence the failure probabilities after time x will be different 
for each failure mode. In order to understand how this will affect the failure 
distribution three different operation conditions have been analyzed using Siemens 
proprietary prognostics algorithms for a similar part. The conditions cannot be 
revealed in detail – however it can be stated that each of them is based upon a unit 
operating at a fixed condition somewhere within the 50 – 105% nominal power output 
range in a simple-cycle application and fall within the normal regime of operation for 
mechanical drive applications. Both Case A and Case B fall within realistic conditions 
for base load power generation near or at design conditions. Case C is a part load 
case that resembles a pipeline application in a temperate climate. The relative life 
consumption rates for the failure modes at Cases A, B and C are shown in Table 1. 
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Table 1. Relative life consumption rates for Cases A, B, C 
Case FM1 FM2 FM3 FM4* 
A 1,00 1,00 1,00 1,00 

B 0,489 0,503 0,473 1,00 

C 0,027 0,03 0,026 1,00 

* = Note: In this study FM4 will only be used to represent a load-independent infant 
failure mode. 

 

In summary, the conclusions from the previous study were: 

- If the shape parameter is the same for all present failure modes, then the CPD 
 will follow the same shape parameter 

- In order to correlate observed failure times to predictions per failure mode, it 
 appears that “all” data needs to be available in “perfect” condition, including 
 complete operation history, complete knowledge of all failure modes, and 
 models describing the impact of all present and previous non-conformities in 
 parts performance and unit configurations. 

- Observation of the shape parameter appears to be a useful method to 
 determine whether infant, random or wear-out failures dominate the failure rate 
 for a particular part or sub-system 

- Surprisingly, the value added from running all parts to failure appears to 
 reduce the quality of shape-based predictions. Rather contradictory, the first 
 few per cents of the failure distribution appears to provide the most value. 

- More work is needed to understand how service experience can be used to 
 extrapolate conclusions from one operation regime to another 

- More work is also needed to understand how detailed operation experienced 
 data analysis can be transferred to decision support data useful for the 
 operation and maintenance of individual gas turbine plants. 
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6 OPERATION INDEPENDENT INFANT FAILURES 

On the Internet, there are claims that gas turbine blades and vanes can display 
typical shape parameters of 1,6 with a range between 0,9 – 2,7, and scale 
parameters of 125000 with a range between 10000 and 160000. Unfortunately it is 
not clear whether the numbers are collected for e.g. first-stage blades only, or are 
suggested to be valid for any blade or guide vane. In particular the scale parameter 
must be valid only for a mix of early-stage parts since the life times quoted as scale 
parameters are in the range of normal service times for power turbine blades in a 
range of gas turbines known to the author. In any case it would be interesting to see 
how much of the variation in primarily shape, but to a lesser extent also in scale, 
parameters that can be explained by datasets with mixed operation conditions, and 
some infant failures. 

Load-independent infant failures are modelled with standard infant failure mode 
shape parameter of 0,5 and two different scale parameters: 50000, corresponding to 
50% of blades failed after around five years of operation, and 1000000, 
corresponding to 50% of blades failed after around 100 years. While it can appear 
questionable to call 50% of parts failed after 120 years a case of infant mortality, the 
results will show why this case was tested. 

The sensitivity of parts performance were analyzed as function of load cases A, B, C 
and a mixture of 20%, 60% and 20% blade sets operated in each load case, 
respectively. The fraction of parts with the infant failure mode active was also varied 
from 0% to 100%. The results are illustrated in Figure 2 below. From the Figure it is 
obvious that if more than a few per cent of the blades suffer from an infant mortality 
failure mode, even one with a considerable scale parameter, there will be a dramatic 
impact on the life expectancy of said parts. The main reason is that with 50 blades 
per set, the failure probability per blade set will correspond to the combined failure 
rate of all the blades. 
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Figure 2: Time to 50% failure probability for blade sets with load-independent infant 

failure mode 

 

Observations – operation independent infant failure rate 

The following observations appear relevant for pure infant failure modes in gas 
turbine blades. 

- If failure is interpreted as something that makes the unit inoperable, then an 
 amount of such blades above 1% or so would cause immediate failures all 
 over the fleet. It appears that a Weibull scale parameter of 10 to 1000 would 
 be representative for the resulting blade set characteristics. Interestingly, this 
 happens even with a scale parameter of 1000000 hours. 

- It would therefore appear that infant failure models for gas turbine blades and 
 vanes are only applicable for very severe, rare production faults that may 
 sneak through quality control, and possibly for failures that are easily spotted 
 but do not have immediately catastrophic consequences. 

 

7 OPERATION DEPENDENT EARLY WEAR-OUT FAILURES 
Considering the extreme effect of traditional infant failure models on data, it appears 
necessary to test other failure models that can possibly help understanding how 
shape factors in the order of 0,9 to 1,6 can be considered feasible for gas turbine 
parts. In literature a concept of early wear-out failures is also suggested, resulting in 
a bathtub curve with an additional bump near the end of the infant failure or burn-in 
phase, [4]. See Figure 3 for a comparison of bathtub versus rollercoaster curves. In 
order to test the rollercoaster approach, two hypotheses for early wear-out of blades 
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were tested. Both assume that a fraction of the blades in the population will have 
properties lower than the standard blades. This reduction is modelled as a reduction 
in scale parameter. For the purpose of this study, the reduction is simulated by 
dividing the blades with reduced properties into ten groups with a linear life reduction 
factor. Both a linear and a triangular distribution among the different groups were 
tested. The parameters are shown in Table 2. Finally, in real situations the non-
conformance of parts is often due to irregularities in the manufacturing process, 
resulting in a strong correlation in characteristics to other parts manufactured at the 
same time, so-called batch effects. Therefore, set characteristics were evaluated 
both assuming all blades from same property group and assuming totally randomly 
distributed blades. 

 

 

Figure 3: Bathtub vs Rollercoaster failure rate distributions 

Table 2. Early wear-out life impact factors 
Group 1 2 3 4 5 6 7 8 9 10 
Life 
factor 

0,
1 

0,
2 

0,
3 

0,
4 

0,
5 

0,
6 

0,
7 

0,
8 

0,
9 

1,
0 

Group 
weight 
triang. 0,

01
 

0,
03

 

0,
05

 

0,
07

 

0,
09

 

0,
11

 

0,
13

 

0,
15

 

0,
17

 

0,
19

 

Group 
weight 
linear 0,

1 

0,
1 

0,
1 

0,
1 

0,
1 

0,
1 

0,
1 

0,
1 

0,
1 

0,
1 

 

Finally, it was assumed that all failure modes were affected the same way – that is, 
all three failure modes are scaled according to the same life impact factor. 

Results – triangular distribution in reduction of properties 

The results are shown in Table 3 as CPD Combined Probability Distribution 
estimates for Case A and for the mixed operation case, and as T50%. Results are 
shown for 0% to 100% non-conforming blades. 
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Table 3A. CPD parameters for triangular distribution, mixed operation case. 
Randomly distributed blades 

Per cent bad 
blades 

CPD 
shape 

CPD 
scale 

T50% R quality 
parameter 

100 2,3 17000 13600 2,76 

50 2,5 19000 15200 2,26 

10 2,4 31000 24800 1,96 

5 2,4 35000 28000 1,84 

1 2,5 37000 29600 1,3 

0 2,6 37000 29600 1,08 

 

Table 3B. CPD parameters for triangular distribution, mixed operation case. 
Batch distributed blades 

Per cent bad 
blades 

CPD 
shape 

CPD 
scale 

T50% R quality 
parameter 

100 1,9 28000 22400 1,06 

50 2 33000 26400 0,82 

10 2,3 37000 29600 0,91 

5 2,3 39000 31200 1,44 

1 2,6 36000 28800 1,22 

0 2,7 37000 29600 1,68 

 

Table 3C. CPD parameters for triangular distribution, Case A operation case. 
Random distributed blades 

Per cent bad 
blades 

CPD 
shape 

CPD 
scale 

T50% R quality 
parameter 

100 3 7000 5600 0,03 

50 2,9 9000 7200 0,04 

10 2,7 15000 12000 0,29 

5 2,9 16000 12800 0,04 

1 3 18000 14400 0,08 

0 3 19000 15200 0,09 
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Table 3D. CPD parameters for triangular distribution, Case A operation case. 
Batch distributed blades 

Per cent bad 
blades 

CPD 
shape 

CPD 
scale 

T50% R quality 
parameter 

100 2,2 13000 10400 0,14 

50 2,3 16000 12800 0,08 

10 2,6 19000 15200 0,07 

5 2,9 18000 14400 0,15 

1 3 19000 15200 0,1 

0 3 19000 15200 0,01 

 

 

Observations – triangular distribution 

The following observations were made in the triangular distributions results: 

- R quality parameter is much lower for the Case A data than for the mixed 
 operation data 

- The influence on shape parameter from bad parts is stronger for batch 
 distributed parts, but the influence on scale is smaller. This applies for both 
 Case A data and mixed operation data. 

- Ideally the probabilities with 0% faulty blades should be identical, and the 
 same applies for the R parameter values. There is however a tiny difference in 
 the fourth decimal in the numerical data. Although not confirmed the author 
 expects that this is a numerical issue caused by the different numeric involved 
 when assuming random and batch distribution of bad blades, respectively. 

- The observed range of shape values is 1,9 – 3,0. 

Results – linear distribution in reduction of properties 

The results are shown in Table 4 as CPD Combined Probability Distribution 
estimates for Case A and for the mixed operation case, and as T50%. Results are 
shown for 0% to 100% non-conforming blades. 
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Table 4A. CPD parameters for linear distribution, mixed operation case. 
Randomly distributed blades 

Per cent bad 
blades 

CPD 
shape 

CPD 
scale 

T50% R quality 
parameter 

100 2,7 7000 5600 2,71 

50 2,5 10000 8000 2,4 

10 2,5 18000 14400 2,66 

5 2,6 21000 16800 3,42 

1 2,5 32000 25600 1,83 

0 2,7 36000 28800 1,41 

 

Table 4B. CPD parameters for linear distribution, mixed operation case. Batch 
distributed blades 

Per cent bad 
blades 

CPD 
shape 

CPD 
scale 

T50% R quality 
parameter 

100 1,5 24000 19200 1,95 

50 1,7 31000 24800 1,5 

10 2 39000 31200 0,3 

5 2,2 37000 29600 0,47 

1 2,5 37000 29600 0,86 

0 2,7 37000 29600 1,68 

 

 

Table 4C. CPD parameters for linear distribution, Case A operation case. 
Randomly distributed blades 

Per cent bad 
blades 

CPD 
shape 

CPD 
scale 

T50% R quality 
parameter 

100 2,1 6000 4800 1,02 

50 2,5 6000 4800 0,41 

10 2,6 10000 8000 0,49 

5 2,7 12000 9600 0,38 

1 2,7 17000 13600 0,19 

0 3 19000 15200 0,09 
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Table 4D. CPD parameters for linear distribution, Case A operation. Batch 
distributed blades 

Per cent bad 
blades 

CPD 
shape 

CPD 
scale 

T50% R quality 
parameter 

100 1,6 10000 8000 0,34 

50 1,6 16000 12800 0,37 

10 2,1 20000 16000 0,43 

5 2,4 20000 16000 0,37 

1 2,7 20000 16000 0,15 

0 3 19000 15200 0,01 

 

Observations – linear distribution 

The following observations were done in the linear distributions results: 

- R quality parameter is generally lower for the Case A data than for the mixed 
 operation data 

- The influence on shape parameter from bad parts is stronger for batch 
 distributed parts, but the influence on scale is smaller. This applies for both 
 Case A data and mixed operation data. 

- The impact of failures on the scale parameter is much stronger than for the 
 triangular distribution, in particular for randomly distributed bad blades 

- Ideally the probabilities with 0% faulty blades for batch and random failure 
 distributions should be identical, and the same applies for the R parameter 
 values. There is however a tiny difference in the fourth decimal in the 
 numerical data. Although not confirmed the author expects that this is a 
 numerical issue caused by the different numeric involved when assuming 
 random and batch distribution of bad blades, respectively. 

- The observed range of shape values is 1,5 – 3,0. 

 

Frequency plots and what they tell 

In order to get a more easily understandable overview of the different probability 
distributions, frequency plots of set failure distributions were generated for a couple 
of cases for both triangular and linear distribution of low-performing, or bad, blades. 
Figure 4 shows frequency plots for the triangular distribution, while Figure 5 shows 
frequency plots for the linear distribution. 

The frequency plots show the transition from distributions dominated by bad blades 
to the distribution for normal blades. 
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- There is a considerable difference between random and batch-wise 
 distribution of bad blades. It is clear that knowledge of the degree of batch 
 correlation can help improving reliability predictions. 

- It is clearly obvious that there is no way to align a single failure distribution 
 to the data for the mixed operation case, unless there are a lot of bad blades 
 around – preferably randomly distributed. 

- If the mode of operation is known, like for Case A data, a Weibull wear-out 
 distribution can describe the data quite well 

- For really high numbers of bad blades, a graphical examination would indicate 
 that an infant failure Weibull distribution could describe all but the very earliest 
 part of the failure distribution for batch distribution of failures. 
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Figure 4A-H: Failure frequency distributions for triangular bad parts distribution, 
Mixed operation cases (left column) and Case A operation (right column), for, in top – 

down order, 100% - 10% - 5% - 1% bad blades. 
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Figure 5A-J: Failure frequency distributions for linear bad parts distribution, Mixed 
operation cases (left column) and Case A operation (right column), for, in top – down 
order, 100% - 10% - 5% - 1% - 0,1% bad blades 
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8 CONCLUSIONS, SUMMARY AND OPEN ISSUES 
The Weibull distribution is an amazing tool and can, by a skilled reliability analyst, be 
useful in many situations. However like most easily applicable methods it also has its 
drawbacks. Most of all, a solid understanding of the nature of the problem to be 
modelled is necessary or the conclusions, although statistically reasonable, may be 
totally misleading. The results presented in this paper suggest three conclusions that 
could be of relevance for gas turbine reliability assessment, in particular when 
operation experiences should be evaluated and compared with design calculations. 

Firstly, although Weibull shape parameters down to 0,9 are quoted on the internet it 
seems very difficult to reproduce such results. The main reason appears to be the 
tremendous effect of the fact that there are many blades of the same design in each 
engine, making it very unlikely that all those blades together will survive for very long. 

There are two factors that can make it possible to reproduce these results, either by 
assuming that only a small fraction of all the blades are affected by the infant failure 
mode, or by looking into the definition of failure. It appears plausible that a production 
error could cause e.g. early loss of coating on a blade according to an infant failure 
model. If the loss of coating is immediately visible but not immediately critical to 
failure, one could speculate that this could be observed as infant failures in data. The 
appearance of the resulting failure distribution would require quite complex 
simulations of first the coating loss distribution, then the resulting early wear-out 
damage development, and finally the effect of inspections and probability of detection 
on observability of the damage. This is a subject for further work. 

Secondly, in the case that all parts are not typical samples from the same Weibull 
distribution, the effects of the variation in characteristics have to be considered. This 
applies e.g. to the observed batch effects that are visible even with very small 
amounts of bad parts in the observed population. 

Thirdly, none of the early-wearout models tested were able to generate a 
rollercoaster-type failure distribution. It is left for further work to investigate if this can 
be explained by another – reasonable – early wearout model, or if it is rather 
connected to inspection frequencies and the definition of failure as not meeting 
originally intended life span, including not passing rejection criteria with an unknown 
remaining life to failure. 

It appears that among the necessary requirements for a straightforward, successful 
and physically sound Weibull analysis one should include: proper selection of a 
relevant and easily collectable “time” parameter, and the presence of one single 
dominant failure mode. Although many engineering items fulfil these requirements, 
this is unfortunately not the case for gas turbine hot section parts. It appears that 
there is still much to learn before design predictions and operation experience data 
for gas turbine hot parts can be directly compared with confidence. 
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