Framework for objective risk assessment in bridge management

Paul D. Thompson
Arun Shirole’
Background

- Persistent gap between risk mitigation needs and funding
- Elected officials have little understanding of risk
- Massive needs across all types of infrastructure
 - Highways and transit
 - Water and sewer systems
 - Airports and seaports
 - Schools and other public buildings
Need for new and better risk tools

• Measure and track progress, set targets related to risk
• Balance risk against other performance goals
• Balance transportation risk mitigation needs against other programs
• Develop a prioritized multi-year risk mitigation plan
 • At an appropriate level of resources
 • Consistently address the most significant risks first
• Communicate risk more clearly
Examples of existing tools

Federal sufficiency rating

- 55% of the rating:
 - Condition
 - Load-carrying capacity

- 35% of the rating:
 - Geometrics
 - Condition and load-carrying capacity
 - Waterway adequacy

- 15% of the rating:
 - Traffic volume and network importance

- Up to 13% reduction for:
 - Special safety and mobility deficiencies
Examples of existing tools

• New York State DOT multi-level vulnerability assessment
Examples of existing tools

- Minnesota DOT bridge performance index

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>None</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Not a waterway</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>E</td>
<td>Culvert</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>M</td>
<td>Stable; scour above footing</td>
<td>90</td>
<td>90</td>
<td>70</td>
<td>40</td>
</tr>
<tr>
<td>H</td>
<td>Foundation above water</td>
<td>90</td>
<td>90</td>
<td>70</td>
<td>40</td>
</tr>
<tr>
<td>N</td>
<td>Stable; scour in footing/pile</td>
<td>80</td>
<td>80</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>I</td>
<td>Screened; low risk</td>
<td>70</td>
<td>70</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>L</td>
<td>Evaluated; stable</td>
<td>70</td>
<td>70</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>P</td>
<td>Stable due to protection</td>
<td>60</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>K</td>
<td>Screened; limited risk</td>
<td>60</td>
<td>60</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>F</td>
<td>No eval; foundation known</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>Closed; no scour</td>
<td>50</td>
<td>50</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>J</td>
<td>Screened; susceptible</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>O</td>
<td>Stable; susceptible</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>G</td>
<td>No eval; foundation unknown</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>R</td>
<td>Critical; monitor</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>Closed; scour</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>Imminent protection reqd</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>Critical; protection required</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Smart flag reduction:
Use worst condition state of defect 6000, Scour
Examples of existing tools

- Florida DOT Project Level Analysis Tool

Diagram:
- Random event
- Hazard
- Consequence
- Impact

- Agency costs
- User and non-user costs
- Resilience built into structure
- Operational strategies
Tools we hope to see more: **Resilience**

- Opposite of vulnerability
- Use it like condition
 - Good-Fair-Poor
 - 0-100 resilience index

<table>
<thead>
<tr>
<th>Resilience Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good:</td>
<td>The asset is fully sufficient to resist anticipated hazards.</td>
</tr>
<tr>
<td>Fair:</td>
<td>The asset has elevated likelihood of mild-to-moderate disruption to mobility, safety, economic efficiency, or other performance objectives.</td>
</tr>
<tr>
<td>Poor:</td>
<td>The asset is ineffective in resisting anticipated hazards, and as a result there is high likelihood of severe disruption.</td>
</tr>
</tbody>
</table>
Tools we hope to see more: Resilience

• Opposite of vulnerability
• Use it like condition
 • Good-Fair-Poor
 • 0-100 resilience index

• Good-Fair-Poor can be mapped.
Tools we hope to see more: **Resilience**

- Opposite of vulnerability
- Use it like condition
 - Good-Fair-Poor
 - 0-100 resilience index

- Also suitable for resilience targets, such as % Good and % Poor
Tools we hope to see more: **Resilience**

- Opposite of vulnerability
- Use it like condition
 - Good-Fair-Poor
 - 0-100 resilience index

- Use engineering criteria to assess Good-Fair-Poor

Input to structural integrity evaluation

Screen
- Bridge population
- Susceptibility groups

Classify
- Vulnerability classes

Rate
- Vulnerability rating

Analysis

- Inventory screen:
 Over/not over water

- Susceptibility screen 1:
 Culverts, slow stream velocity, no substructure unit in floodplain, non-scourable foundation material

- Susceptibility screen 2:
 Abutment and foundation type, long/short/timber piles, spread footing on earth/erodable rock, scour damage

- General hydraulic assessment:
 River slope/velocity, channel bottom & configuration, debris/ice, river confluence, backwater, scour depth, max flood depth, adequacy of opening, overflow relief

- Foundation assessment:
 Existing scour counter-measures, foundation, river bend, embankment inclination, embankment encroachment, footing or pile bottom below stream bed, angle of attack, pier width, simple spans, multiple piers in floodplain

- Likelihood:
 Vulnerability class

- Consequence:
 Failure type: catastrophic, partial collapse, damage

- Exposure:
 Traffic volume, functional classification
Tools we hope to see more: **Social cost**

- Use with life cycle cost
- Benefits of improved resilience
- Considers safety, mobility, and sustainability

- **NCHRP 20-07 (378) describes a methodology**
Tools we hope to see more: Social cost

• Setting priorities and allocating resources across dissimilar asset classes that are typically managed independently
• Prioritization that consistently and objectively considers the cost of risk mitigation and the magnitude of exposure to risks
• Combining risk avoidance with life cycle cost savings in an overall assessment of project benefits
• Quantifying the benefits of projects that combine multiple asset classes
• Evaluating projects that postpone hazardous conditions
• Suggesting a reasonable starting point for balancing safety, mobility, environmental, and economic concerns
Methodology conclusions

• Resilience is the ability to resist natural and man-made hazards

 Resilience and vulnerability are opposite ends of a scale
 • It can be characterized as Good-Fair-Poor
 • It can be shown on a map
 • It can be graphed using trend, forecast, and target
 • It can be assessed using objective data

• Social cost can quantify project benefits across asset classes
 • Even non-highway assets such as sewers and school buildings
 • Standardized methods and metrics already exist
 • Easy to integrate with life cycle cost
 • Basis for objective resource allocation
Implementation conclusions

• Develop a shared vision among decision-makers
 • Objectivity, verifiability, transparency
 • Understanding what information is possible to obtain

• Authorizing environment
 • Elected officials accept measurable objectives
 • Persistent communications

• Organizational capacity
 • Staffing to deliver risk mitigation projects
 • Systems and training in place

• Thank you!