DEVELOPMENT OF LIMIT STATE BASED STRUCTURAL HEALTH MONITORING THRESHOLDS FOR EFFICIENT BRIDGE MANAGEMENT

Nathaniel Dubbs, PhD, PE

April 27, 2017

INTERNATIONAL BRIDGE + STRUCTURE MANAGEMENT CONFERENCE 118

Structural Health Monitoring Challenge 1

- What is it?
- First common challenge seen with SHM
 - Lack of a common definition
- A process aimed at providing accurate and in-time information concerning structural health condition and on performance (Princeton)
- The process of implementing a damage detection and characterization strategy for engineering structures (LANL)
- The practice of identifying and tracking <u>quantitative performance</u> metrics through measured data and analytical models (IIS)

What you can measure is not what you need; what you need, you cannot measure.

integrate into Bridge Management frameworks?

Structural Health Monitoring Challenge 3

What to do?

- Continue to engage with peers and colleagues on best practices and share experiences
- Our opinion on best practices to SHM
 - Constant engagement with the end-user
 - Design, not procurement.
 - Definition of clear *performance requirements* at the RFP stage
 - Allows for creative design by bidders on providing the translation of measurements to actionable information

Performance Requirement Framework

Risk Assessment

Input-Output Analysis

- **Inputs**: Parameters independent of the bridge structure which tend to act upon the bridge
 - * Wind, vessel impact, overloads, temperature gradients, etc.
- **Outputs**: Response of the bridge as a function of material or structural properties
 - Displacement, strain, surface temperature, rotation, etc.

Instrumentation Design

111S Intelligent Infrastructure Systems

the

- Armed with required input and output provide the system can be designed:
 - Type / size / location of ser
 - Data acquisition str
 - Protection

determined on a case

sary)

azard simulation

mami

Performance Criteria

- Metrics used to establish acceptable levels of hazards or vulnerabilities
- Serve as the foundation for alerting and integration into ITS / TMC / AM systems
- Directly informed
 - Tend to be institutional or code-based and related to Inputs
 - Maximum legal loads
 - A Maximum allowable wind speeds
- Indirectly informed
 - Tend to relate to structural safety (ie, Outputs)
 - Usually require structural engineering analysis
 - Remaining capacity

End-User Engagement

CASE STUDY: MULTI-GIRDER STEEL BRIDGE

ENGINEERING-BASED PERFORMANCE METRICS TO SUPPORT BRIDGE MANAGEMENT

Background / Motivation

- A 46 year old bridge will be subject to nearby site construction with significant loading (1,000T +).
- Characteristics:
 - ✤ 1,767' total length
 - Two-span continuous steel multi-girder approach
 - Continuous steel truss
 - Four lanes
 - Varied substructures
 - ♦ Pile-supported abutments
 - Pile-supported piers
 - Piers on bedrock
- Note: Confidential project

Pre-contract stakeholder meeting

• Goals:

- Determine feasibility of SHM
- Establish performance requirements of interest
 - Monitor for permanent rigid body translations of the two piers in all three directions
 - Monitor for permanent rigid body rotations of the two piers in all three dimensions
 - Ensure that any measured rigid body movements do not impact the load rating of the steel multi-girder span with respect to Strength and Serviceability limit states.
 - Ensure that any measured rigid body movements do not generate cracking in the reinforced concrete piers.
 - Ensure that any measured rigid body movements do not bottom out any of the movement systems.

Risk Assessment

• One fundamental risk that motivated this project..

Image source: http://bright-cars.com/photo/scheuerle-spmt/08/default.html

Input – Output Analysis

Performance Metric Input	Output	Sensing Approach			
Rigid body• Thermaltranslations• Heavy load	 Expansion / contraction Translation Axial force Support movement 	 VW Displacement Laser Distance Weather Local Temperature VW Strain 			
 Rigid body rotations Heavy load Live load 	Expansion / contractionRotation	VW TiltWeatherLocal temperature			
* VW = Vibrating Wire type sensors					

Instrumentation Design

18

Definition of Performance Criteria – Superstructure Capacity

- 3D FE refined load rating computation
 - Agency and AASHTO defined rating vehicles
 - Required to simulate the occurrence of live load together with movements defined under the performance requirements
 - Added benefit to owner was improved live load ratings (>1) due to refined analysis
 - Automation used to cut down analysis time
- Allowable superstructure ratings given support movements were computed.
 - In line with NCHRP 12-103

Definition of Performance Criteria – Serviceability

Definition of Performance Criteria – Kinematic Systems (Movement Mechanisms)

• Given the height of the piers, it was most likely to bottom out movement mechanism before reaching other limit states

Result

_		A CONTRACTOR OF THE OWNER.	
	Movement	Allowable	Governing Case
Pier 1	+ Ry (°)	0.15	Pier Serviceability - Differential Rotation
	- Ry (°)	0.06	Kinematic - Abutment 1 Expansion Joint
	+ Dx (in)	2.2	Pier Serviceability - Differential Longitudinal Movement
	- Dx (in)	0.91	Kinematic - Abutment 1 Expansion Joint
	+ Dy (in)	0.35	Pier Serviceability - Differential Transverse Movement
	- Dy (in)	0.55	Pier Serviceability - Differential Transverse Movement
	+ Dz (in)	0.2	Pier Serviceability - Differential Settleme
	- Dz (in)	0.3	Pier Serviceability - Differential Settlement
	+ Ry (°)	0.3	Kinematic - Span 3 Rocker Bearing
	- Ry (°)	0.09	Kinematic - Span 3 Rocker Bearing
	+ Dx (in)	4.34	Kinematic - Span 3 Rocker Bearing
Pier 2	- Dx (in)	1.32	Kinematic - Span 3 Rocker Bearing
	+ Dy (in)	0.75	Pier Serviceability - Transverse Movement
	- Dy (in)	0.55	Pier Serviceability - Transverse Movement
	+ Dz (in)	6.2	Superstructure Rating - Negative Bending Interior Girder
	- Dz (in)	6.2	Superstructure Rating - Negative Bending Interior Girder

INTERNATIONAL BRIDGE + STRUCTURE MANAGEMENT CONFERENCE

Implementation

AGEMENT

- Geotechnical consultant computed expected movements
 - Well within SHM thresholds
- Real-time display created for on-site situational awareness

Integration of SHM Data into Bridge Management Frameworks - Thoughts

- This specific case study is hoped to demonstrate how SHM systems can be used to translate raw measurements into actionable information that can be integrated into management structures
 - Simple as visual alert
 - Complex as integration with TMC or other controls
- End-user buy-in and understanding of how thresholds were established and computed are essential
- Sensors should only be used if they can (directly or indirectly) inform a specific performance metric
 - "I have a solution what's your problem?" versus "Where do your concerns lie?"

Structures Congress 2018

- SHM / Asset Management Session
 - Please contact <u>ndubbs@iisengineering.com</u> if interested

Intelligent Infrastructure Systems (IIS) A Pennoni Company

Nathan Dubbs, PhD, P.E. (215) 254-7743 ndubbs@iisengineering.com

1900 Market Street, Suite 300 Philadelphia, PA

PENNONI ASSOCIATES INC.

What frameworks to testing of bridges even exist? Intelligent Infrastructure Systems Structural Identification of Constructed Systems (1) Approaches, Methods, and Technologies for Effective Practice of St-Id Utilization of Observation model for and P. Nocati Cathes ***** (6) simulations conceptualization ASCE (2) Model Structural A-priori calibration Identification modeling and parameter ID MAC $\varphi_{ana(i)}^{T} \cdot \varphi_{exp(i)}$ (5) = $\varphi_{ana(i)} \overset{T}{\cdot} \varphi_{exp(i)} \cdot \varphi_{exp(i)} \overset{T}{\cdot} \varphi_{ana(i)}$ Processing and Controlled (3) Interpretation of Experimentation data (4)

SHM Design Approach – Crawl, walk, then run...

VAGEMEN'

