Using DAA therapy to eliminate HCV
Dream Or Reality?

Ed Gane
NZLTU, Auckland City Hospital

The Life cycle of an Infectious Disease

1. Discovery ✓
2. Reliable diagnostic test ✓
3. Effective therapy ✓
4. Protective vaccination
5. Control of disease burden
6. Elimination of infection
7. Global eradication of infection

Control vs. Elimination vs. Eradication

Control: reduction in prevalence, morbidity/mortality of an infectious disease to a locally acceptable level.

Elimination: reduction to zero of the incidence of disease or infection in a defined geographical area, but requires continued measures to prevent re-establishment of transmission (e.g. measles, polio)

Eradication: permanent reduction to zero of the worldwide incidence of infection, with no further control measures required (e.g. smallpox).

Hepatitis C is silent global epidemic of 21st Century

- 1.1% i.e. 80 million (62-103) infected

Global burden from liver disease is increasing more rapidly than any other disease

Global Burden of Disease study 1990 - 2013
estimated age-sex-specific all-cause mortality

- CVS
- Diarrhoea
- Trauma
- Resp
- Neonatal
- AIDS
- Liver
- Tropical ID
- GI
- Malaria
- Diabetes

HCV is now the leading cause of liver-related morbidity and mortality

Global Burden of Disease study 1990 - 2013 estimated age-sex-specific all-cause mortality

Deaths due to HCV more than doubled between 1990 - 2013; Liver cancer deaths due to HCV increased 300%

Disease burden from hepatitis C will continue to increase as the infected population gets older

Live expectancy reduced in HCV-infected adults

Premature death (<65 years) and median age at death among all deaths, NYC (2000–2011)

Liver transplant Decompensation HCC

Germany France

Can Vaccination eradicate HCV?
Best candidates in development

<table>
<thead>
<tr>
<th>Approach</th>
<th>Antigen</th>
<th>Company</th>
<th>Subjects</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombinant proteins</td>
<td>gpE1; gpE2</td>
<td>Chiron; CSL InnoGenetics</td>
<td>Chimps; Humans</td>
<td>N; N</td>
</tr>
<tr>
<td>Core</td>
<td>Novartis</td>
<td>Chimps</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>NS3-core</td>
<td>Globeimmune</td>
<td>Humans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptides</td>
<td>T-cell epitopes</td>
<td>Intercell AG</td>
<td>Humans (HLA-A2+)</td>
<td>N</td>
</tr>
<tr>
<td>Viral vectors</td>
<td>Adenovirus</td>
<td>Okairos; NIH</td>
<td>Chimps; Humans</td>
<td>Y; ?</td>
</tr>
<tr>
<td>Vaccinia</td>
<td>Transgene; NYBC</td>
<td>Chimps</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Virus-like particles</td>
<td>Core-E1E2</td>
<td>NIH</td>
<td>Chimps</td>
<td>Y</td>
</tr>
<tr>
<td>DNA vaccine with electroporation</td>
<td>HCV NS3, 4a, 4b, 5a</td>
<td>Tripart; VGX/Inovio</td>
<td>Humans</td>
<td>?</td>
</tr>
</tbody>
</table>

The Life cycle of an Infectious Disease

1. Discovery
2. Reliable diagnostic test
3. Effective therapy
4. Protective vaccination
5. Control of disease burden
6. Elimination of infection
7. Global eradication of infection
Can Vaccination eradicate HCV?
Many barriers to successful vaccine development

HCV FACTORS
- HCV genomic diversity
 - An6-E1/E2 escape mutants
 - CD4+/CD8+ escape mutants
- T cell exhaustion
- Impaired DC maturation
- HCV NS3/5A inhibits IFN

PATIENT FACTORS
- Host genomic diversity
 - IL28B SNP
- Limited TCR repertoire
- MHC Class 1 restriction
- Aging population
- HIV co-infection

OTHER FACTORS
- Chimpanzee is the only animal model for vaccine
- Preclinical results do not translate to humans
- Reduced interest in need for prophylaxis
- Vaccinating PWID may not be practical

Can Public Health interventions eradicate HCV?
Recent decrease in Incidence of HCV infection

HCV notifications in Australia: 1991-2013

Can Public Health measures eradicate HCV?
HCV Prevention through Harm Reduction

- HCV incidence among PWID in Australian NSP Survey

Can Public Health measures eradicate HCV?
Harm reduction cannot eliminate HCV in isolation

- OST and NEX alone will reduce prevalence in PWID by maximum of 30% over 10 years
- BUT prevent HIV, drug-related deaths, crime

Can Public Health measures eradicate HCV?
Only 41% countries have needle syringe programmes

Can Public Health measures eradicate HCV?
Only 35% countries have opioid substitution therapy
Could HCV be eliminated through antiviral therapy?

Current situation

- All HCV patients
- Diagnosed
- Treatment uptake
- CURE

PEG/RBV ± PI
- 100%
- 40%

Could HCV be eliminated through antiviral therapy?

DAA therapies with higher SVR rates

- All HCV patients
- Diagnosed
- Treatment uptake
- CURE

PEG/RBV ± PI
- 90% SVR
- 40%

Treatment and Diagnosis Rate by Country, 2013

- Estimated HCV prevalence, diagnosis and treatment rates in 2013

Could HCV be eliminated through antiviral therapy?

DAA therapies combined with increased uptake

- All HCV patients
- Diagnosed
- Treatment uptake
- CURE

PEG/RBV ± PI
- 90% SVR
- 90% SVR and increased uptake

DAAs offer a new treatment paradigm for HCV

More effective and safer therapies

- Receptor binding and endocytosis
- Fusion and uncoating
- Transport and release
- RNA replication
- N-terminus

Combine 2 or more DAAs
- Additive antiviral effect
- High barrier to resistance
- IFN-free and RBV-free
- Shortened duration

Simple
- Short duration
- Low pill burden
- Minimal monitoring
- Minimal drug-drug interactions

Affordable
- all populations

Effective
- Pangenotypic
- >95% Cure rates
- Improved survival
- Improved QoL

Safe
- NO Interferon
- No Ribavirin
- No toxicity
- No DDIs

Special Pops
- Elderly
- Liver failure
- Renal failure
- HIV co-infection

DAAs
- Non-NUC NS5B inhibitors
- NUC NS5B inhibitors

Ledipasvir plus Sofosbuvir (Harvoni™) 1st IFN and RBV-free Single Tablet Regimen

- Ledipasvir (LDV)
 - Picomolar potency against GT 1a and 1b
 - Effective against NS5B RAV S282T
 - Once-daily, oral, 90 mg
- Sofosbuvir (SOF)
 - Potent antiviral activity against GT 1–6
 - Effective against NS5A RAVs
 - High barrier to resistance
 - Once-daily, oral, 400-mg tablet
- Ledipasvir/Sofosbuvir STR
 - Once-daily, oral fixed-dose (90/400 mg) combination tablet
 - >2000 patients treated in clinical trials
 - >200,000 treated in real world

AbbVie Multi-Targeted 3-DAA (3D) Regimen

Ombitasvir (OBV)
N5S5A inhibitor

Paritaprevir (PTV)
NS3/4A protease inhibitor boosted with ritonavir

Dasabuvir (DSV)
A non-nucleoside NS5B RNA polymerase inhibitor

AbbVie 3D Phase III Trials in HCV GT-1

- Ombitasvir (OBV)
- Paritaprevir (PTV)
- Dasabuvir (DSV)

Merck MK2 regimen in HCV GT 1, 4, 5 and 6: Grazoprevir/Elbasvir Fixed Dose Combination

- Grazoprevir (MK-5172)
 - HCV NS3/4A inhibitor
 - 100 mg once daily, oral

- Elbasvir (MK-8742)
 - HCV NS5A inhibitor
 - 50 mg once daily, oral

- Broad in vitro activity against most HCV genotypes
- Retains in vitro activity against many clinically relevant RAVs
- All-oral, once-daily regimen

AbbVie-3D Phase III Trials in HCV GT-1

SAPPHIRE-1.2 GT1a no cirrhosis
PEARL-2.3 GT1b no cirrhosis
TURQUOISE-2 GT1a Cirrhosis
TURQUOISE-3 GT1b Cirrhosis

Merck Phase III Trials in HCV GT-1/4/6 12 weeks GZR/EBR without RBV: C-EDGE Studies

Overall Efficacy across the Phase 3 Program

SVR in 97% (1886/1951) Relapse in 1.8% (36/1951)

ION-1 Treatment-naïve including cirrhotics
ION-3 Treatment-naïve non-cirrhotics
ION-2 Treatment-experienced including cirrhotics

Data on File, Gilead Sciences, Inc.

References:
Patients with decompensated cirrhosis
- HIV/HCV co-infection
- Some DDIs with SOF/RBV
- Safe and well tolerated

ALLY 3 Study (GT 1 or 4)
- SVR12 (%)
 - 100
 - 96
 - 92
 - 88
 - 84
 - 80
 - 76
 - 72
 - 68
 - 64
 - 60
 - 56
 - 52
 - 48
 - 44
 - 40
 - 36
 - 32
 - 28
 - 24
 - 20
 - 16
 - 12
 - 8
 - 4
 - 0

SVR Rates in Compensated HCV GT 1

Safe & effective therapy in decompensated cirrhosis
SOLAR Studies of 12 and 24 wks Harvoni + RBV
- 12 Wks LDV/SOF+RBV
- 24 Wks LDV/SOF+RBV

SVR12 (%)
- 67
- 100
- 80
- 66
- 40
- 20
- 5
- 0

Pan-genotypic Regimen NUC + NS5AI
Sofosbuvir + Daclatasvir in GT 1 - 6
- ALLOY 3 Study (GT-3)
- All I Study (GT 1-6)
- Compensated
- Decompensated

SVR12 (%)
- 96
- 63
- 82
- 80
- 83
- 64
- 44
- 24
- 0

Pan-genotypic Regimen: NUC + 2nd Wave NS5AI
Sofosbuvir + Velpatasvir (GS-5816) in GT 1 - 6
- Phase 2, open-label studies of GS-5816/SOF+RBV for 12 weeks

AbbVie Viekira Pak, Gilead Harvoni and Merck MK2
Oral DAA therapies in HCV GT 1

- In clinical trials and real world studies, IFN-free DAA regimens are well tolerated with >95% SVR after 8-12 weeks in treatment-naive GT 1
- What about other “difficult-to-cure” populations
 1. Patients with decompensated cirrhosis
 2. Patients with HIV co-infection
 3. Patients infected with other HCV genotypes

Safe & effective therapy in HIV co-infection
No longer a baseline predictor of response?
The regimen which is the shortest duration possible

What DURATION of treatment is needed to eradicate HCV without Interferon?

What DURATION of treatment is needed?
New 3 Phase Model with Intra-cellular dynamics

Can these new therapies be used to eliminate HCV?
What would it take to reduce disease burden in ANZ
- Funding of new oral therapies for all cirrhotics
- Access to Fibroscan to identify cirrhotics
- Capacity to treat 2%/year (100% increase)

What would it take to eliminate HCV from ANZ
- Funding of the new oral therapies for everyone
- Community testing to identify the 60,000 Australians and New Zealanders who remain undiagnosed
- Capacity to treat 10%/year (1000% increase)
- Treat those who are transmitting HCV (PWID, prisoners) i.e. “treatment as prevention

What would it take to eliminate HCV from ANZ
- Funding of new oral therapies for all cirrhotics
- Access to Fibroscan to identify cirrhotics
- Capacity to treat 2%/year (100% increase)

What barriers still remain to national elimination and global eradication of Hepatitis C?
1. Low diagnosis rates
 - Targeted testing, Point-Of-Care tests in community
 - Community access to Fibroscan
2. Low treatment uptake
 - Wide access to DAA Therapy
 - Simplified referral and treatment algorithms
 - Test and treat in the community
3. High cost of DAA
 - Government investment in High Income countries
 - Donor access programs in Low Income countries

What would it take to eliminate HCV from ANZ
PBAC recommendations: March 2015

<table>
<thead>
<tr>
<th>GT</th>
<th>Therapy</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Harvoni (LDV/SOF) SOF/PEG/RBV</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>SOF + Daclatasvir</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Viekira Pak (AbbVie-3D)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SOF + RBV</td>
<td>12-16</td>
</tr>
<tr>
<td>3</td>
<td>SOF + Daclatasvir</td>
<td>12</td>
</tr>
</tbody>
</table>

- **ALL STAGES** of liver disease
- **S85 PRESCRIBING**: Community Pharmacy & GPs

POSSIBLE PBS LISTING DEC 2015 OR EARLY 2016
What would it take for global eradication of HCV?

DAA Access Programmes

FIERCE PHARMA (http://www.fiercepharma.com)

Gilead in talks with Indian drugmakers to sell Sovaldi at cut-rate prices

February 4, 2014 | By Tracy Staton

"We are going to give license[s] to Indian companies," Gilead is aiming for a price on Sovaldi of about $2,000 for a treatment course. He said. The U.S. sticker price is $84,000 for a 12-week cycle.

GILEAD OFFERS EGYPT NEW HEPATITIS C DRUG AT 99 PERCENT DISCOUNT

BY MAGGIE FICK CAIRO/LONDON Fri Mar 21, 2014 4:10pm EDT

(Reuters) - Sovaldi, has offered to supply the medicine to Egypt at a 99 percent discount to the U.S. price. While the drug will still cost $900 for a 12-week course of treatment, that is a fraction of the $84,000 charged for a course of treatment in the United States.

What would it take for global eradication of HCV?

World Health Organisation Targets for 2030

WHO Resolution on Viral Hepatitis (WHA67.6) May 22nd 2014

Expand and enhance services

Decrease new infections

Decrease deaths

Reduce global suffering and costs

- 90% diagnosed
- 60% eligible-tREATED
- 90% treated-cURED
- 50% PWID within harm reduction services by 2020
- 70% reduction in HCV incidence (95% by 2020)
- 0 new infections from unsafe medical practices by 2020
- 75% reduction in new infections from unsafe blood transfusion
- 75% reduction in HCV-related deaths

• 50% PWID within harm reduction services by 2020
• 70% reduction in HCV incidence (95% by 2020)
• 0 new infections from unsafe medical practices by 2020
• 75% reduction in new infections from unsafe blood transfusion
• 75% reduction in HCV-related deaths

PWID: people who inject drugs
WHO: World Health Organization

Thanks to

1. Greg Dore, Kirby Institute
2. Margaret Hellard, Burnet Institute
3. Avidan Neumann, Berlin
4. Eleanor Barnes, University of Oxford
5. Charles Henderson, NZ Needle Exchange
6. Homie Razavi, CDA
7. Katie Appleby, PHARMAC
8. Ame Elsome, Gilead Sciences
9. Tara Satanyand, AbbVie