Azithromycin pharmacokinetics and implications for extended doses for treating Chlamydia trachomatis

Kong FYS,1 Simpson JA,1 Horner P,2 Fairley CK,3,4 Hocking JS1
1Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia; 2School of Social and Community Medicine, University of Bristol, United Kingdom; 3Melbourne Sexual Health Centre, Melbourne, Australia; 4Central Clinical School, Monash University, Melbourne, Australia.

Methods and analysis
A review of studies reporting the pharmacokinetics of oral azithromycin for urogenital and anorectal tissue were the primary focus but other tissues susceptible to chlamydia infection (excluding eyes) were included.

- Dose administered and key pharmacokinetic parameters were extracted for each study i.e. maximum concentrations (Cmax), time to Cmax (Tmax), area under the concentration-time curve (AUC) for time 0-24 hours (AUC0-24), 0-last time (AUC0-last) and/or 0-infinity (AUC0-∞).
- Dose dependent associations with total drug absorption (Fig 1) and tissue concentrations (Fig 2-4) was presented.
- The pharmacokinetic data was then used to make some suggestions for what might be an appropriate dosing regimen for extended courses of azithromycin.

Background: There is increasing concern about the efficacy of azithromycin for the treatment of genital chlamydia and particularly for anorectal chlamydia. Extended doses has been considered as one option to improve efficacy but the optimal regimen is unclear. A review was undertaken to examine the dose-related pharmacokinetics of azithromycin in anogenital, urogenital and other tissues to provide possible considerations for extended dose regimens that would improve azithromycin’s efficacy.

Results
- Blood/tissue concentrations follow a near-linear, dose-dependent relationship (Fig 1,3,4) and appear non-saturable with short courses.
- Concentrations above MIC were sustained for >7 days in most tissues except for muscle and lymphatic tissue (Fig 2-4). The latter is of concern for treating extracellular replicating chlamydia and LGV.
- Data in gastric mucus (not shown) suggest potential concentrations in rectal mucus which has negative implications for douching.
- pH in rectal tissue may have an effect on azithromycin efficacy (Fig 4)
- Total absorption are dependent more on total dose than duration (Fig 1)
- Short courses (3 days) appears to optimize dosing with a high first dose (e.g. 1g) exploiting drug delivery by phagocytic cells during the acute phase of infection i.e. “hit hard, hit early” (data not shown).

Concentration (mcg/g or mcg/mL) (Fig 2-4)

Figure 1: Azithromycin total absorption (blood) by dose (AUC0-∞)

Figure 2: Azithromycin tissue concentrations, by type, following 500mg dose

Figure 3: Gynaecological tissue concentrations by dose

Figure 4: Gastric tissue (proxy for rectal tissue) concentrations by dose

Conclusion
- Optimized short courses improves patient compliance and possibly efficacy.
- Short courses, with high ‘front end’ loading doses (‘hit hard, hit early’) represents a feasible dosing regimen when doses >1g are required.
- Regimens of 2g over 3 days (1g, 500mg, 500mg) may be feasible for overcoming treatment failure of Mycoplasma genitalium, gonorrhoea and potentially rectal chlamydia infections.

Background:

Contact: Fabian Kong; kongf@unimelb.edu.au

World STI & HIV Congress 13-16 September 2015, Brisbane Australia, ID #100
Acknowledgment: World STI & HIV Congress Scholarship

*17 hours post dose. **prostate sample for 12 hrs was at 11-11hrs and for 6-7 days was at 104-122hrs; *gynaecological tissue data for 6-7 days was sampled at 4 days and tonsils data for 24hrs was sampled at 9-18hrs; *saliva and gingiva were a 12-hour post dose following a dose of 500mg daily for 3 days. Uterine tissue includes kidney, epididymis, vas deferens, seminal vesicle/fuid