Lactic acid dampens inflammatory responses elicited by microbial TLR agonists from vaginal and cervical epithelial cells

Gilda Tachedjian1,2,3,4, Anna C. Hearsps1,2, Daniela Srbinovski1,3, David Tyssen1, Muriel Aldunate1,3, Raffi Gugasyan1, Deborah Anderson5, Richard A. Cone6.

1Centre for Biomedical Research, Burnet Institute, Melbourne, Australia; 2Department of Infectious Diseases and 3Department of Microbiology, Monash University, Melbourne, Australia; 4Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; 5Department of Obstetrics and Gynaecology, Boston University School of Medicine, Boston, MA, USA; 6Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.

Background

- The female reproductive tract (FRT) is a primary route of transmission of sexually transmitted infections (STI) including HIV.
- *Lactobacillus* spp. dominate the microbiota of the healthy FRT.
 - Produce lactic acid (LA, both L and D isomers) to >1%.
 - Associated with positive reproductive and sexual health outcomes.
- The FRT is lined with epithelial cells which are a physical and immunological barrier to infection (Fig.1).
- Inflammation in the FRT increases the risk of STI and HIV acquisition1.
- Inflammatory FRT imbalances such as bacterial vaginosis increases susceptibility to STI/HIV by 2-3 fold2.
- Lactobacilli impair pathogen mediated inflammation from FRT cells3.
- We have shown LA is virucidal against HIV4, but the impact of LA on pathogen-induced inflammation from FRT epithelial cells is unknown.

Methods

The effect of LA (pH 3.9) on the viability and inflammatory response of epithelial FRT cells was assessed.

- Vaginal (VK2), endocervical (End) and ectocervical (Ect) epithelial cell lines and cervicovaginal primary cells were used.
- Cells were treated in transwells (physiologically relevant format).
- Cell viability (MTS assay) and monolayer integrity (diffusion of fluorescent dextrins, Fig. 2) were determined following treatment.
- Cytokine release from FRT epithelial cells stimulated with toll-like receptor (TLR) agonists ± LA was determined using a Luminex-based multiplex assay (ProCartaplex, eBioscences).
- The effect of D-LA and L-LA at neutral pH was also determined and compared to media pH adjusted to low pH with HCl.

Results

Virucidal concentrations of LA are relatively non-toxic and do not disrupt FRT epithelial cell monolayers.

- L-LA and D-LA up to 0.3% (pH3.9) have minimal effect on FRT epithelial cell line viability (Fig. 3A).
- Low pH alone (pH 3.9, adjusted with HCl) was non-toxic.
- Treatment of epithelial cell lines with 0.3% L- or D-LA, or low pH alone does not significantly alter dextran diffusion (B&C).

LA induces an anti-inflammatory response from primary FRT epithelial cells and cell lines

- 0.3% L-LA (pH 3.9) induces production of the anti-inflammatory cytokine IL-1RA from primary and FRT epithelial cell lines (Fig 4A).
- Similar effect seen with D-LA, but not L-LA at neutral pH (pH 7.4) or low pH alone (HCI, Fig. 4B).

LA induces an anti-inflammatory state in FRT epithelial cells which inhibits TLR-induced inflammation.

- 0.3% L-LA inhibits the pro-inflammatory response to TLR agonists.
 - Observed in FRT epithelial cell lines (Fig. 5A-F) and primary cells (G&H).
 - Similar effect seen with D-LA but not neutralised L-LA or low pH (not shown).
- Pre-treatment of cells with L-LA protects cells from subsequent TLR-induced inflammation (Fig. 5I&J).

Conclusions and Significance

- Virucidal, relatively non-toxic concentrations of LA (0.3%) elicit an anti-inflammatory response from cervicovaginal epithelial cells of the FRT and reduce the TLR-induced production of pro-inflammatory cytokines and chemokines known to activate/recruit HIV target cells.
- D-LA had a similar anti-inflammatory effect, but L-LA at neutral pH or low pH (HCl adjusted) media alone did not.
- Pre-treatment of cells with LA was able to induce an anti-inflammatory state that protected from later TLR challenge. These results suggest the potential for LA to be used in topical microbicides to maintain an anti-inflammatory state in the FRT, and help reduce inflammation, cell activation and subsequent HIV and STI susceptibility.

References