Multi-Task Functional Connectivity And Flexible Hubs

Michael W. Cole, Ph.D.

Assistant Professor

Center for Molecular & Behavioral Neuroscience

Rutgers University

How is the brain's functional architecture organized?

- Systems as graph communities
 - Clusters of highly interconnected nodes
- 'Community detection' algorithms
- Applied to wholebrain resting-state graphs (Power et al., 2011)

Brain systems = brain's organization?

- Stable organization
 - Standard processing pathways
- Rapidly changing context?
- Task-evoked functional connectivity may be key
 - Coordinating global-scale activity flow

Overview

- Task FC updates build on a stable intrinsic network architecture
- Flexible hubs coordinate task FC updates to implement task goals
- Flexible hubs support mental health

Overview

- Task FC updates build on a stable intrinsic network architecture
- Flexible hubs coordinate task FC updates to implement task goals
- Flexible hubs support mental health

Is there a stable functional network architecture?

 Multi-task method: Remove inter-block rest, compute correlations across task time series

Does network architecture change across tasks?

Significant FC changes from rest

Overview

- Task FC updates build on a stable intrinsic network architecture
- Flexible hubs coordinate task FC updates to implement task goals
- Flexible hubs support mental health

How are dynamic updates coordinated?

- Building on Desimone & Duncan (1995) and Miller & Cohen (2001)
 - Form of attentional selection
 - Like train track switching station

Flexible hub theory

- Cognitive control network regions configure activity flow to implement task demands
- Two mechanisms:
 - 1. Global brain connectivity
 - 2. Flexible connectivity

Flexible control from global connectivity

Testing for flexible connectivity

- Hypothesis: CCN has highly flexible (variable) connectivity
- New measure: Global variability coefficient

Testing for flexible connectivity

Global variability coefficient

Variable connectivity across 64 task states

CCN shifts connectivity with the rest of the brain across a variety of tasks

Overview

- Task FC updates build on a stable intrinsic network architecture
- Flexible hubs coordinate task FC updates to implement task goals
- Flexible hubs support mental health

Flexible hub feedback control mechanism

- Frontoparietal system implements goal-directed cognition
 - Domain general(Chein & Schneider,2005; Duncan, 2010)
- Likely a feedback loop + search mechanism

Frontoparietal flexible hubs as immune system of the mind

- When reducing own symptoms is task goal
- When task-focused, suppresses irrelevant/unwanted mental processes (e.g., symptoms)
- When learning new tasks, following instructions (e.g., talk therapy, mental health strategies)

Frontoparietal flexible hubs as immune system of the mind

Frontoparietal flexible hubs as immune system of the mind

Summary & Conclusions

- There is an intrinsic network architecture
 - Present across rest and many tasks
- Task-evoked network changes specify tasks
 - Coordinated by frontoparietal flexible hubs
- Frontoparietal flexible hubs promote mental health
 - Via global goal-directed coordination of brain activity

Acknowledgements

- My lab at Rutgers University in Newark
- Washington University
 - Todd Braver, Steve Petersen, Jonathan Power,
 Deanna Barch, & others
- University of Pittsburgh/Carnegie Mellon
 - Walter Schneider, Robert Kass, & others
- Yale University & University of Ljubljana
 - Alan Anticevic, Grega Repovs, & others
- Funding: NIMH K99/R00 grant

More information: www.colelab.org