Application of Performance Based Earthquake Engineering (PBEE) to Caltrans Ordinary Standard Bridge Design

California Dep. of Transportation
Yeo (Tony) Yoon
Toorak Zokaie
Part A – Approach and Theoretical Background
Components of Performance Based Earthquake Engineering

• **Hazard Analysis:**

 Hazard Identification: Location, Intensity, Risk Loading: Seismic Intensity -> Acceleration Record/Input Motion

• **Structural Analysis:**

 Structural Analysis: Modeling Guidelines & Software

• **Damage Analysis:**

 Displacement, Ductility, & Strain

• **Loss Analysis**
1. Hazard Analysis

- **Linear Spectral Analysis:** Acceleration Response Spectra: ARS Online

- **NLTHA:** Uniform Excitation \rightarrow Acceleration Time History
 - Basis of Design: Site-Specific Design (Target) ARS obtained from ARS online
 - Synthetic Records (captures important site characteristics)
 - Record Selection (subset of all generated records)
 - Spectral Matching (Modify record to have its ARS match a target ARS)
 - Average of 7 Records
PBEE Application – Part A

1. Hazard Analysis

Synthetic Record Generation:

- UCB Synthetic Record Generation Algorithm (By Prof. ADK)

Input Parameters:
F, M_w, V_{s30}, R, etc

Random Model Parameters: Ia, D_{5.95}, etc

White Noise

Random Model Parameters: Ia, D_{5.95}, etc

White Noise

Random Model Parameters: Ia, D_{5.95}, etc

White Noise

Synthetic Records

• Modeling of Velocity Pulse
Parameters Needed for Record Generation:

• **Fault Type**: Strike-Slip or Non-Strike-Slip

• **Moment Magnitude, \(M_w \)**: Can be chosen between 5.5 to 8

• **Fault Distance, \(R \)**: Between 0 km and 30 km

• **Shear Wave Velocity, \(V_{s30} \)**: Between 100 m/s and 2100 m/s

• **Directivity Angle, \(\theta \)**: Between 0 and 90 degrees

• **Distance, \(S \)**: Between 0 km and 70 km
PBEE Application – Part A

1. Hazard Analysis

Synthetic Record Generation - Example

Pseudo-acceleration response spectra at 5% damping of the NGA record #285 (black thick line), of 20 simulated ground motions using the fitted parameters (grey lines), and their geometric mean (thick grey line)
PBEE Application – Part A

1. Hazard Analysis

Record Selection:

- Spectral Matching using TDSMatch based on Time Domain algorithm by Norm Abrahamson used in RSPMatch

![Design ARS with ARSs from Synthetic GMs](image)

TDSMatch
PBEE Application – Part A

1. Hazard Analysis

Input Motion Generation/Selection:

• Generate Design ARS from ARS Online (Target ARS), based on 1000-year return period

• Generate Synthetic Records: 50 Records (with near field velocity pulse if near field effect is needed)

• Select 7 records (from set of 50) with closest match to target ARS within $0.5 < T < 3.0$ seconds

• Scale Records: Use TDSMatch to adjust the 7 selected records to the target ARS

• Use the adjusted records for analysis
PBEE Application – Part A

2. Structural Analysis

Nonlinear Time History Analysis (NLTHA):

• Bridge Behavior in Seismic event is NONLINEAR
• NLTHA is the most accurate method available
• Current tools are efficient enough for NLTHA
• Response Spectrum Analysis does not capture some key nonlinear responses (e.g., column plastic hinge, span hinge, shear key, abutment response, & isolation bearing)
• Equal displacement principal is an approximation
PBEE Application – Part A

2. Structural Analysis

What is needed for Nonlinear Time History Analysis:

• Loading Guidelines (i.e., Acceleration Time History Records):
 ➢ Intensity, peak acceleration, #of peaks
 ➢ Duration
 ➢ Frequency content
 ➢ Near-Field Effect

• Modeling Guidelines: PEER 2008-03

• Reliable Software: CSI-Bridge, OpenSees, & Midas-Civil

• Acceptance Criteria: $\Delta_{\text{capacity}} / \Delta_{\text{demand}}$, Ductility, etc.
PBEE Application – Part A

2. Structural Analysis
Modeling Nonlinear Behavior:

• Column Hinge

• Abutment Springs

• Hinge impact & Shear key

• Soil Structure Interaction (p-y, t-z, & q-z)
PBEE Application – Part A

2. Structural Analysis

Response Calculation:

• Apply each input motion in longitudinal and transverse directions (and more directions if curved or highly skewed)

• Record maximum displacements in longitudinal and transverse directions

• Calculate average of the maximum displacements (in each direction) as displacement demand

Capacity Calculation:

• Perform push-over analysis in longitudinal and transverse directions

• Calculate displacement capacity based on strain limits given in SDC
PBEE Application – Part A

3. Damage Analysis

Acceptance Criteria / Damage Assessment:

- Displacement-based, Current SDC Limits:
 - $\Delta_{\text{demand}} =$ average $\Delta_{\max.\text{col}}$ of each column
 - $\Delta_{\text{capacity}} =$ From Push-over analysis of bent or frame
 - $\mu_{d.\text{col}} = \frac{\Delta_{\text{demand}}}{\Delta_y}$; $\mu_{c.\text{col}} = \frac{\Delta_{\text{capacity}}}{\Delta_y}$
 - $\Delta_{\text{demand}} \leq \Delta_{\text{capacity}}$ &
 - $\mu_{d.\text{col}} \leq 4$ (single column) or 5 (multi-column) &
 - $\mu_{c.\text{col}} \geq 3$
3. Damage Analysis

Possible Future Acceptance Criteria / Damage Assessment:

• No Push-over Analysis needed, instead calculate the ultimate curvature for each plastic hinge

• Compare Curvature demand and capacity:
 ➢ Yield curvature = \(\phi_y \), based on SDC idealized M-\(\phi \) curve
 ➢ Curvature demand = \(\phi_d \) = Average of maximum curvatures of the 7 analysis cases
 ➢ Curvature capacity = \(\phi_c \) (based on SDC strain limits), i.e.: \(\phi_d \leq \phi_c \)
 ➢ Curvature Ductility: \(\phi_c / \phi_y \geq 10 \) (using SDC values)

• Identify Damage Index:
 ➢ Curvature demand \(\rightarrow \) Max strain demand \(\rightarrow \) Damage Index
3. Damage Analysis

Possible Future Acceptance Criteria / Damage Assessment:

Damage State (DS) Index with Associated Strain Threshold and Repair Cost
Based on the work by Saini and Saiidi, 2014

<table>
<thead>
<tr>
<th>Damage State (DS)</th>
<th>Description</th>
<th>Trigger</th>
<th>Trigger Value</th>
<th>Item - Strategy</th>
<th>Units</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Concrete Cover Strain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concrete Core Strain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Main Steel Strain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Confinement Steel Strain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Surface cracks</td>
<td>Strain</td>
<td><= 0.002</td>
<td>OK</td>
<td>na</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>First spalling</td>
<td>Strain</td>
<td>0.002 < ε ≤ 0.005</td>
<td>Patch Concrete</td>
<td>SQFT</td>
<td>$400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td></td>
<td></td>
<td>$250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.002 < ε ≤ 0.005</td>
<td>Epoxy Inject</td>
<td>LF</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.002 < ε ≤ 0.005</td>
<td></td>
<td></td>
<td>$50</td>
</tr>
<tr>
<td>3</td>
<td>Major spalling</td>
<td>Strain</td>
<td>Spalled to core strain height</td>
<td>Patch Concrete</td>
<td>SQFT</td>
<td>$400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.005 < ε ≤ 0.008</td>
<td></td>
<td></td>
<td>$250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.005 < ε ≤ 0.010</td>
<td></td>
<td></td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.005 < ε ≤ 0.010</td>
<td></td>
<td></td>
<td>$50</td>
</tr>
<tr>
<td>4</td>
<td>Exposed reinf.</td>
<td>Strain</td>
<td>Spalled</td>
<td>Steel Column Casing</td>
<td>EA</td>
<td>$61,200</td>
</tr>
<tr>
<td>5</td>
<td>Core shedding</td>
<td>Strain</td>
<td>Spalled</td>
<td>Replace Column</td>
<td>EA</td>
<td>$138,055</td>
</tr>
<tr>
<td>6</td>
<td>Failure (rupture)</td>
<td>Strain & Displ.</td>
<td>Spalled</td>
<td>Replace Superstructure and Columns</td>
<td>EA</td>
<td>$1,455,840</td>
</tr>
</tbody>
</table>
Hazard Analysis - Loading (Input motions):
- Generate 50 synthetic records (Include near-field effect if needed)
- Select 7 records that best match design ARS in range $0.5s < T < 3.0s$
- Use TDSMatch to adjust selected records to design ARS

Structural Analysis - Modeling: Include major nonlinearities:
- Column plastic hinge, abutment spring, shaft p-y, & span hinge

Structural Analysis - Analysis: CSIBridge, OpenSees, or Misdas-Civil, etc.
- Perform Nonlinear analysis in long./transverse (and maybe more) directions
- Calculate maximum displacement demand (average of 7 motions)

Damage Analysis - Acceptance Criteria:
- Perform Push-over analysis, obtain displacement capacity
- Compare displacement demand vs. capacity (Current SDC)
- Future: Compare curvature demand demand vs. capacity
Continue to Part B..
Application of Performance Based Earthquake Engineering (PBEE) to Caltrans Ordinary Standard Bridge Design

California Dep. of Transportation
Yeo (Tony) Yoon
Toorak Zokaie
Part B –
Illustrative Example
PBEE Application – Part B

Design Scenario: An Ordinary Standard Bridge will be located in Bay Area, near San Mateo, at junction of highway 82 and 92. The bridge is a CIP/PT box girder bridge with two spans of 150 feet each. The bent consists of two 5’-6” diameter reinforced concrete columns. The footing is founded on competent rock.
PBEE Application – Part B

Step 1: Acceleration Record Generation & Selection

Step 2: Structural Analysis for Demand

Step 3: Structural Analysis for Capacity & Damage Assessment
PBEE Application – Part B

Step 1a: Acceleration Record Generation - Determine Target ARS from ARS Online and Obtain Parameters for Synthetic Ground Motion Generation.

Fault: Strike-Slip
Mw: 8.0
R: 5.4 km
V_{S30}: 760 m/sec
θ: 28 deg
s: 10 km
PBEE Application – Part B

Step 1a: Acceleration Record Generation - Determine Target ARS from ARS Online and Obtain Parameters for Synthetic Ground Motion Generation.

Location: LAT=37.550226 LONG=-122.311993 Vs30=760m/s

Minimum Deterministic Spectrum
- San Andreas (Peninsula) 2011 CFM (With Near Fault Factor Applied)
- San Gregorio fault (San Gregorio section) (With Near Fault Factor Applied)
- San Andreas (Santa Cruz Mts) 2011 CFM (With Near Fault Factor Applied)
- USGS 5% in 50 years hazard (2008) (With Near Fault Factor Applied)

Target ARS for Spectral Matching
PBEE Application – Part B

Step 1b: Acceleration Record Generation - Generate 50 ground motions.
PBEE Application – Part B

Step 1c: Acceleration Record Selection - Find 7 motions with lowest deviations from Target ARS.
PBEE Application – Part B

Step 1d: Acceleration Record Selection - Conduct Spectral Matching of 7 Motions to Target ARS.
PBEE Application – Part B

Step 1d: Acceleration Record Selection - Conduct Spectral Matching of 7 Motions to Target ARS.

Scaled Velocity Time History
Filename = scenario#1_Sim#2_FN_Acc_NoPulse_2013_6_20.txt, Scale Factor = 1.003, Sum of Error Squared = 0.017

Scaled Displacement Time History
Filename = scenario#1_Sim#2_FN_Acc_NoPulse_2013_6_20.txt, Scale Factor = 1.003, Sum of Error Squared = 0.017
PBEE Application – Part B

Step 1d: Acceleration Record Selection - Conduct Spectral Matching of 7 Motions to Target ARS.
PBEE Application – Part B

Step 2a: Structural Analysis – Idealize Bridge Model

Geometry & Material Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Deck</th>
<th>Bentcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (ksi)</td>
<td>4287</td>
<td>4287</td>
</tr>
<tr>
<td>G (ksi)</td>
<td>1786</td>
<td>1786</td>
</tr>
<tr>
<td>f'_{ce} (ksi)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>$A_{CrossSection}$</td>
<td>79</td>
<td>79</td>
</tr>
<tr>
<td>I_{xx} (ft4)</td>
<td>-</td>
<td>156</td>
</tr>
<tr>
<td>I_{yy} (ft4)</td>
<td>418</td>
<td>-</td>
</tr>
<tr>
<td>I_{zz} (ft4)</td>
<td>13307</td>
<td>325</td>
</tr>
</tbody>
</table>
PBEE Application – Part B

Step 2a: Structural Analysis – Idealize Bridge Model

\[P_{axial} = 1340 \text{ k} \]

DS5 \(\varepsilon_{ult} \) 0.06

Column Plastic Hinge
Fiber Model

Shear Key F-\(\Delta \)
PBEE Application – Part B

Step 2a: Structural Analysis – Idealize Bridge Model

Rayleigh Damping:
5 % damping @ T = 0.17 & 2 sec (f = 0.5 & 5.88 Hz)

Integration Type:
Newmark

Algorithm:
Modified Newton
PBEE Application – Part B

- Displacement time history in longitudinal direction:
 - Column top subjected Motion Rock2

- Displacement time history in transverse direction:
 - Column top subjected Motion Rock2

Displacement time history @ column top subjected Motion Rock2

Moment - Curvature History
@ column top subjected Motion Rock2
PBEE Application – Part B

Step 3a: Structural Analysis for Capacity – Conduct Push-over Analysis to determine Displacement & Curvature Capacity

Pushover results in transverse direction

<table>
<thead>
<tr>
<th>Damage State</th>
<th>Δ_y (in)</th>
<th>Δ_c (in)</th>
<th>ϕ_y (rad/in)</th>
<th>ϕ_c (rad/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ($\varepsilon_{ult} = 0.06$)</td>
<td>2.3</td>
<td>1.8</td>
<td>12.9</td>
<td>10.4</td>
</tr>
</tbody>
</table>
PBEE Application – Part B

Step 3b: Acceptance Criteria / Damage Assessment

Displacement Based

<table>
<thead>
<tr>
<th>Motion ID</th>
<th>Δ_d (in)</th>
<th>μ_d (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Long Dir</td>
<td>Trans Dir</td>
</tr>
<tr>
<td>ROCK1</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>ROCK2</td>
<td>4.3</td>
<td>7.8</td>
</tr>
<tr>
<td>ROCK3</td>
<td>3.9</td>
<td>6.7</td>
</tr>
<tr>
<td>ROCK4</td>
<td>3.5</td>
<td>6.1</td>
</tr>
<tr>
<td>ROCK5</td>
<td>4.7</td>
<td>7.1</td>
</tr>
<tr>
<td>ROCK6</td>
<td>3</td>
<td>11.6</td>
</tr>
<tr>
<td>ROCK7</td>
<td>5.4</td>
<td>6.6</td>
</tr>
<tr>
<td>Avg</td>
<td>4.1 $< \Delta_c$</td>
<td>7.8 $< \Delta_c$</td>
</tr>
<tr>
<td>Δ_c</td>
<td>12.9</td>
<td>10.4</td>
</tr>
<tr>
<td>μ_c</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
PBEE Application – Part B

Step 3c: Alternate Acceptance Criteria / Damage Assessment

Curvature Based

<table>
<thead>
<tr>
<th>Motion ID</th>
<th>(\phi_d) (in) @ Col 1</th>
<th>(\phi_d) (in) @ Col 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Long Dir</td>
<td>Trans Dir</td>
</tr>
<tr>
<td>ROCK1</td>
<td>2.8E-04</td>
<td>8.6E-04</td>
</tr>
<tr>
<td>ROCK2</td>
<td>3.5E-04</td>
<td>8.2E-04</td>
</tr>
<tr>
<td>ROCK3</td>
<td>3.3E-04</td>
<td>8.4E-04</td>
</tr>
<tr>
<td>ROCK4</td>
<td>2.9E-04</td>
<td>6.8E-04</td>
</tr>
<tr>
<td>ROCK5</td>
<td>4.5E-04</td>
<td>6.8E-04</td>
</tr>
<tr>
<td>ROCK6</td>
<td>3.8E-04</td>
<td>9.1E-04</td>
</tr>
<tr>
<td>ROCK7</td>
<td>4.5E-04</td>
<td>7.0E-04</td>
</tr>
<tr>
<td>Avg</td>
<td>3.6E-04 < (\phi_c)</td>
<td>7.8E-04 < (\phi_c)</td>
</tr>
</tbody>
</table>

\(\phi_c \)

| \(\phi_c \) | 1.3E-3 | 9.1E-4 | 1.3E-3 | 9.1E-4 |
| \(\phi_c / \phi_y \) | 19.7 > 10 | 13.0 > 10 | 19.7 > 10 | 13.0 > 10 |
PBEE Application – Part B

The above example was performed applying the motions in bridge longitudinal and transverse directions only. The complete analysis can be made repeating steps 2 & 3 by orienting the ground motions at different orientations (30 & 60 deg) per MTD 20-17.
PBEE Application – Part B

Question?