Detection of Treponema pallidum DNA from whole blood and earlobe specimens in patients from two STI clinics in Lima, Peru
Chow JY³, Flores JA¹, Vargas SK, Leon SR, Konda KA²,4, Klausner JD, Caceres CF
¹Division of Infectious Diseases, Division of Infectious Diseases, School of Medicine, University of California, Los Angeles, CA, USA;²Unit of Health, Sexuality and Human Development, and Laboratory of Sexual Health, Universidad Peruana Cayetano Heredia, Lima, Peru

BACKGROUND

Epidemiology
- Treponema pallidum causes >10 million new syphilis infections worldwide each year.
- Within Latin America, syphilis is concentrated in high-risk populations including sex workers, men who have sex with men (MSM) and transgender women (TW).
In Peru, prevalence is >20% in MSM/TW.

Diagnosis
- Diagnosis of syphilis in Peru relies on a syndromic approach.
- Disadvantages: many are asymptomatic and those who are symptomatic may remain sexually active without seeking treatment.
- There are also high reinfection rates, especially in high-risk groups.
- Laboratory diagnosis relies on treponemal (TP-PA) and non-treponemal (RPR or VDRL) tests. However, it can be difficult to distinguish between patients who are truly cured after treatment and those who may continue to be infected, especially those at high risk of reinfection.

Molecular Detection
- Recently, assays that can confirm infection by directly detecting T. pallidum DNA have been developed.
- Most commonly used to detect T. pallidum DNA in active ulcerations.
- T. pallidum DNA can also be detected in whole blood and ear lobe scraping samples. In two studies, DNA was detected in 56%-76% of ear lobe scrapings, and 38.1-59.1% of whole blood samples from patients infected with syphilis.
- T. pallidum has a predilection for hiding in capillaries during the latent phase of syphilis, and since the ear lobe is rich in capillaries and poor in sensory nerves, it is a promising site for collection of T. pallidum DNA.
- A number of genes have been used as targets for detection, including the TpN47, polA, bmp, bmpC, tpmp4, and 16S-rRNA genes.

AIM: In this study, we set out to detect T. pallidum DNA in whole blood and ear lobe samples from MSM and TW diagnosed with syphilis in two STI clinics in Lima, Peru.

METHODS

Participants: Data were obtained from baseline samples collected for a prospective cohort study of 401 men who have sex with men (MSM) and transgender women (TW) from 2 STI clinics in Lima, Peru.

Testing and specimen collection:
1. HIV testing: Participants were tested using rapid HIV testing (Alere Determine, USA), a combined Antibody/Antigen/Blood EIA, and Western blot confirmation (Genscreen Ultra HIV Ag-Ab and Genetix Systems HIV-1 Western Blot, Bio Rad, USA).
2. Syphilis infection was assessed with RPR (BD MacroVue, USA) and TP-PA (Fujirebio, Japan).
3. Whole blood samples and earlobe capillary blood were collected from patients with a positive RPR and TP-PA (Figure 1).

Earlobe is pierced with a lancet, capillary blood is expressed and collected on a sterile dacron swab, then placed in buffer.

Molecular detection of T. pallidum DNA:
1. DNA extraction was performed using the QiAmp mini kit (Qiagen, Valencia, CA), and samples were then concentrated.
2. Using specific primers for the TpN47 gene, an aliquot of the DNA sample was amplified using conventional PCR with participants with high RPR titers (≥1:16).
3. Positivity was determined by visual detection of PCR product on 1% agarose gel (Figure 2). Positive (T. pallidum Nichols strain) and negative (water) controls were used to verify the success of the PCR reaction. Positive samples were repeated four times for confirmation of DNA detection.
4. PCR against the beta globin gene was also run as a positive control to verify the success of DNA extraction (not shown).

RESULTS

Sample pooling:
310bp TpN47 PCR product
Sample gel showing Negative and Positive Controls

NEGATIVE
TP-PA

310bp TpN47 PCR product

FIGURE 2:

Number of participants by RPR titer

0 4 16 32 64 256
1:128 1:64 1:32 1:16 1:8

FIGURE 3:

Number of participants with T. pallidum DNA detected in whole blood and ear lobe blood, stratified by number of positive TpN47 PCR reactions

FIGURE 4:

Overall, only a small proportion (17.9%) of our participants had T. pallidum DNA detected by TpN47 PCR in either whole blood or ear lobe blood. This is less than other studies which have found greater success in isolating T. pallidum DNA from both whole blood and ear lobe scrapings.

Some possible explanations for the low yield could include:
- Methods of specimen collection. We used capillary blood collected from the earlobe instead of ear lobe scrapings.
- Ear lobe scrapings were avoided because of fear of causing a stigmatizing scar on our MSM and TW participants.
- Small amounts of DNA in tissue. Because we anticipated that very small amounts of DNA would be present in the earlobe and blood specimens, we concentrated the extracted DNA samples before using them in the PCR reactions. Nevertheless, the yield still proved to be low.

In addition to low yield, there was an issue of inconsistent results when TpN47 PCR was repeated on the same specimen. This could be due to:
- Low amounts of DNA in the original sample.
- Degradation or the small amount of DNA over the time that the repeated reactions were run.

Further steps to verify amplification PCR product could be undertaken through other techniques such as sequencing or restriction enzyme digest.

Next Steps:
- Optimize collection of samples, extraction of DNA, and detection of T. pallidum DNA to improve yield.
- Analysis with a larger number of samples may allow determination of clinical/clinical characteristics that may predict likelihood of DNA detection.
- Detection of T. pallidum DNA continues to be an informative technique because it is the first step in the molecular characterization of T. pallidum, including macrodilute resistance and subtyping.

CONCLUSION:
We were able to isolate T. pallidum DNA from a small number of whole blood and earlobe samples collected from patients with syphilis. Further work is needed to determine how to improve this yield and to determine factors associated with DNA detection.

BIBLIOGRAPHY


CONTACT & ACKNOWLEDGEMENTS

Contact: Jeremy Chow
jchow@mednet.ucla.edu

We would like to acknowledge the work of Barton and Epicentro for their help in conducting the study. The Plasso study is funded by a grant from the United States NAID and was implemented by the Universidad Peruana Cayetano Heredia in collaboration with the University of California, Los Angeles. The molecular part of the study was implemented with assistance from the University of Washington.