Secondary Use of Claims Data from the Austrian Health Insurance System with i2b2: A Pilot Study

Florian Endel1 \hspace{1cm} Georg Duftschmid2

1Vienna University of Technology, ASC (florian@endel.at)
2Medical University of Vienna, CeMSIIS

eHealth Vienna, 2016-05-24
Outline

1 Background: claims data
2 i2b2
3 Evaluation
4 Conclusion & outlook
Objective

Can claims data research with GAP-DRG be raised to a new level using i2b2?

background GAP-DRG, a database providing *claims data* from Austrian health care system

i2b2 data warehouse framework for clinical data and research, integrated with...

docker software containers, custom ontologies and test data from GAP-DRG

user feedback by re-enacting cohort extraction on test data
General Approach for Patient-oriented Ambulant DRGs

Grundlagenforschung für ambulante patientenbezogene DRGs

GAP-DRG became a proper name

... inherited from one of the first larger projects
• claims data
• from the Austrian public health- and social insurance system
• governed by:
 Main Association of Austrian Social Security Institution (HVB)
• accounting & administrative information
• routinely collected data
• linked data
• secondary data use
• meta-data and registries
• pseudonomized, encrypted, indirectly personalized
Coverage & availability

2006 & 2007 whole Austrian population
 • main source of this project

2008 - 2011 Lower Austria: "GAP-DRG2"
 • rich data of good quality
 • vastly advanced data model, loading procedures, ...
 • regional restriction

Outlook GAP-DRG 3
 • ongoing effort
Data Management

- relational data structure
- foreign keys enforcing validity
- normalization
- optimized indexes

- historization guaranteed by constraints (GAP-DRG2)
Claims data in GAP-DRG

Advantages
- maximum flexibility for developers
- manual optimization of database queries
- full data access
- automation, reproducibility, ...

Disadvantages
- good understanding of databases and SQL strictly required
- utilization complicated and error-prone
- much experience necessary
- no granular user rights management
- no abstraction of data model, might change with new version
Outline

1. Background: claims data
2. i2b2
3. Evaluation
4. Conclusion & outlook
Informatics for Integrating Biology and the Bedside

- National Center for Biomedical Computing in Boston, MA
- "clinical data informatics framework", data warehousing application
- for clinical data, reuse of EHR records and patient centered data
- open source, extendable, modularized
- various user interfaces, API (SOAP, REST)
- role based security model
- SHRINE (Data Sharing Network)

⇒ hard to deploy, complex data integration & ontology
Implementation & deployment with docker

• automatic, self-contained build using software containers
• completely reproducible process
• container-based deployment: no prerequisites, evaluated successfully
• various versions, simple upgrade, regression tests
• still only available in development environment...

\(^a\) all scripts available on GitHub: github.com/FlorianEndel/i2b2-Docker

Data & ontology

• randomly distorted test data from GAP-DRG
• custom ontology (\(>\) 23,000 items)
Software containers: docker

- something between virtual machine & "app"
- flexible, low resource consumption, independent
- open source, cutting edge, broad adoption

[www.docker.com/what-docker]
Outline

1 Background: claims data
2 i2b2
3 Evaluation
4 Conclusion & outlook
Concept

- get early feedback by observing users
- to assess utility, potential usage scenarios, focus group(s)
- reproduce cohorts similar to a real-life project
- with the i2b2 web-interface using randomized test-data
- test with various user types
- very few have access and skills
- compliance of users and available resources

Procedure

- a short introduction is given
- short tasks have to be carried out while details are recorded
- feedback is gathered with a concluding interview

Implementation

- protocol and questionnaire
 - personal information
 - especially knowledge about GAP-DRG, computer systems
- introduction to the system and tasks
 - only rough demonstration of user interface
 - without explanation of content, security system, ...
- information extracted from observation & interview
 - evaluation of completeness, correctness
 - number of situations stuck / help needed for progression
 - does the situation improve with the second challenge?
 - what are the obstacles?
Extracted results

- tested with 6 people: 2 of each group
- general positive feedback

- even **untrained** create cohorts intuitively
- **system experts** dive right into exploration / idea generation
 - new ideas vs. compliance with protocol
- **database experts** save time but miss flexibility

- feedback for i2b2’s user interface (and stability)
Outline

1 Background: claims data
2 i2b2
3 Evaluation
4 Conclusion & outlook
Conclusion & outlook

Conclusion

• i2b2: a viable solution for claims data research with GAP-DRG
• install & deploy with docker: advantages & overcoming obstacles
• targeted users: system experts

Outlook

• deployment in GAP-DRG infrastructure
 • 2016, summer: new server including docker
• i2b2 images based on i2b2’s git-repository

Ambition

• limited access for cohort exploration
• integrate claims data and EHR with SHRINE
Secondary Use of Claims Data from the Austrian Health Insurance System with i2b2: A Pilot Study

Florian Endel1 Georg Duftschmid2

1Vienna University of Technology, ASC (florian@endel.at)

2Medical University of Vienna, CeMSIIS

eHealth Vienna, 2016-05-24
Appendix: GAP-DRG Restrictions

not included

- "clinical data", *omics, health status
- payment details (costs in €)
- personalized information, identifiable natural/legal entities
- social services (e.g. unemployment)
- most information not relevant for payment, e.g.
 - ambulatory unit of hospitals
 - "private" payments
- diagnoses from ambulatory contacts
- **genealogical** information
Appendix: Genealogical information

- relationship between patients
 - spouses (traditionally married couples)
 - parents and children
- information is not (currently) coded directly
- retrieved from co-insurance in patients’ master-data
- complex algorithm
 - with disclaimers, assumptions, imprecision
 - based on specifics of the Austrian insurance system
Appendix: Evaluation background

Myocardial Infarctions in Young Parents

- **Does young parenthood alter the risk for myocardial infarction?**

- **Cohorts retrieved by manually developed database queries**

Genealogical Information

- **Relationship between patients (spouses, child/parent)**
- **Information is not (currently) coded directly**
- **Retrieved from co-insurance in patients’ master-data**
- **Integrated into i2b2’s ontology manually**