One profile or many?
Plasma biomarkers CXCL10, sCD163 and sCD14 reveal distinct associations with HIV treatment response, choice of treatment, and cardiovascular risk factors

Castley A1, James I2, Williams L1, Berry C3, David Nolan1
1Department of Immunology, Royal Perth Hospital, Western Australia
2Institute for Immunology and Infectious Diseases, Murdoch University, Western Australia
3School of Veterinary and Biomedical Sciences, Murdoch University, Western Australia

Abstract

CD4+ T cell and viral load monitoring: a successful paradigm

CD4 T cell and viral load monitoring: a successful paradigm

Background

Elevated Plasma Soluble CD14 and Skewed CD16+ Monocyte Distribution Persist despite Normalization of Soluble CD163 and CXCL10 by Effective HIV Therapy: A Changing Paradigm for Routine HIV Laboratory Monitoring?

Methods

• Study population: 474 consecutive patients with documented CVD risk (age, ethnicity, gender, smoking, blood pressure, BMI, fasting metabolic profile), as well as HIV treatment history and immunological/virological outcomes

• Plasma biomarker assessment: Plasma sCD14, sCD163 and CXCL10 levels measured by ELISA methods

• Statistical analysis: ANOVA for comparison of mean values, multiple regression analysis.
Results: Gender, age, and ethnicity

- 372 Males (87.7% Caucasian)
- 102 Females (28.7% Caucasian)

Results: CD4 counts and viral loads

- Mean CD4 count: Male = 41.7 yrs, Female = 51.1 yrs
- 88.5% ART-treated
- 11.5% ART-treated

Results: Detectable viral load, residual viremia, and no detectable HIV RNA

- 56.7% ART-treated
- 27.1% ART-treated

Results: Smoking status and cardiovascular risk assessment

- 43% of males, 20% of females
- 36% of males, 3% of females

Results: Correlations between plasma biomarkers

- Log CXCL10
- Log sCD163
- Log sCD14
Results: Plasma biomarkers and viral load

- **CXCL10**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

- **sCD163**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

- **sCD14**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

Results: Plasma biomarkers and CD4%

- **CXCL10**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

- **sCD163**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

- **sCD14**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

Integrase inhibitors and plasma biomarker levels
(on Int=17: not on Int=455)

- **CXCL10**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

- **sCD163**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

- **sCD14**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

PIs and plasma biomarker levels
(on PIs=162: not on PIs=310)

- **CXCL10**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

- **sCD163**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

- **sCD14**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

NNRTIs and plasma biomarker levels
(on NNRTI=215: not on NNRTI=257)

- **CXCL10**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

- **sCD163**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

- **sCD14**
 - No PCR
 - VL < 400 copies/mL
 - VL 400 – 1000 copies/mL
 - VL > 1000 copies/mL

Correlations between HIV clinical parameters, ART and plasma biomarkers
Correlations between HIV clinical parameters, ART and plasma biomarkers

sCD163

Correlations between CVD risk factors and plasma biomarkers

- **sCD163**
 - Positive correlation

- **CXCL10**
 - Positive correlation

- **sCD14**
 - Positive correlation

sCD14

Correlations between HIV clinical parameters, ART and plasma biomarkers

- **AP**
 - p=0.29

- **CoxB-110**
 - p=0.62

- **Abs CD14**
 - p=0.73

- **VX403**
 - p=0.90

- **log10 CD163**
 - p=0.95

- **log10 CXCL10**
 - p=0.94

- **VL400**
 - p=0.90

- **VL**
 - p=0.90

- **CD4%**
 - p=0.90

- **Abs CD4**
 - p=0.90

- **CD4:8 ratio**
 - p=0.90

- **Ethnicity**
 - p=0.90

- **Gender**
 - p=0.90

- **Age**
 - p=0.90

Multivariate regression analysis

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>CXCL10</th>
<th>sCD163</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>(\beta)</td>
<td>se</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>-0.13</td>
<td>0.04</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual viremia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>VLDL</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>SQR CD4</td>
<td>0.20</td>
<td>0.02</td>
</tr>
<tr>
<td>HOMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglycerides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total HDL ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statin therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Framingham</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sCD14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abs CD4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4:8 ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnocity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multivariate regression analysis

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>CXCL10</th>
<th>sCD14</th>
<th>sCD163</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>(\beta)</td>
<td>se</td>
<td>(\beta)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>-0.28</td>
<td>0.06</td>
<td>-0.46</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual viremia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL</td>
<td>0.06</td>
<td>0.04</td>
<td>0.001</td>
</tr>
<tr>
<td>VLDL</td>
<td>0.11</td>
<td>0.06</td>
<td>0.001</td>
</tr>
<tr>
<td>SQR CD4</td>
<td>0.20</td>
<td>0.02</td>
<td>0.001</td>
</tr>
<tr>
<td>HOMA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglycerides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total HDL ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statin therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Framingham</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sCD14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abs CD4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4:8 ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnocity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correlation coefficients and significance levels for various biomarkers and clinical parameters are shown in the diagrams and tables.
HIV-1 infection induces strong production of IP-10 through TLR7/8-dependent pathways

References

Rachel P. Simonds, Eliza P. Scullion, Edo E. Groddo, Kelly Benedict, T. Judy Chang, Kayla L. Van, and Robert E. Rosenkrantz

Differential Reduction in Monocyte Activation and Vascular Inflammation With Integrase Inhibitor-Based Initial Antiretroviral Therapy Among HIV-Infected Individuals