

David C Boettiger¹, Stephen Kerr^{1,2}, Rossana Ditangco³, Romanee Chaiwarith⁴, Patrick CK Li⁵, Tuti Parwati Merati⁶, Thuy Thi Thanh Pham⁷, Sasisopin Kiertiburanakul⁸, Nagalingeswaran Kumarasamy⁹, Saphonn Vonthanak¹⁰, Christopher KC Lee¹¹, Nguyen Van Kinh¹², Sanjay Pujari¹³, Wing Wai Wong¹⁴, Adeeba Kamarulzaman¹⁵, Fujie Zhang¹⁶, Evy Yunihastuti¹⁷, Jun Yong Choi¹⁸, Shinichi Oka¹⁹, Oon Tek Ng²⁰, Pacharee Kantipong²¹, Mahiran Mustafa²², Winai Ratanasuwan²³, Nicolas Durier²⁴, and Matthew Law¹

¹The Kirby Institute, UNSW Australia, Australia; ²HIV-NAT, Thai Red Cross AIDS Research Centre, Thailand; ³Research Institute for Health Sciences, Chiang Mai, Thailand; ⁵Queen Elizabeth Hospital, Hong Kong, China SAR; ⁶Udayana University, Sanglah Hospital, Indonesia; ⁷Bach Mai Hospital, Vietnam; ⁸Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; ⁹YRG Centre for AIDS Research and Education, Chennai, India; ¹⁰National Center for HIV/AIDS, Dermatology & STDs, Phnom Penh, Cambodia; ¹¹Hospital Sungai Buloh, Sungai Buloh, Malaysia; ¹²National Hospital of Tropical Diseases, Hanoi, Vietnam; ¹³Institute of Infectious Diseases, Pune, India; ¹⁴Taipei Veterans General Hospital, Taipei, Taiwan; ¹⁵University of Malaya Medical Centre, Kuala Lumpur, Malaysia; ¹⁶Beijing Ditan Hospital, Capital Medical University, Beijing, China; ¹⁷Working Group on AIDS Faculty of Medicine, University of Indonesia/ Cipto Mangunkusumo Hospital, Jakarta, Indonesia; ¹⁸Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; ¹⁹National Center for Global Health and Medicine, Tokyo, Japan; ²⁰Tan Tock Seng Hospital, Singapore; ²¹Chiang Rai Prachanukroh Hospital, Chiang Rai, Thailand; ²²Hospital Raja Perempuan Zainab II, Kota Bharu, Malaysia; ²³Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; ²⁴TREAT Asia, amfAR – The Foundation for AIDS Research, Bangkok, Thailand.

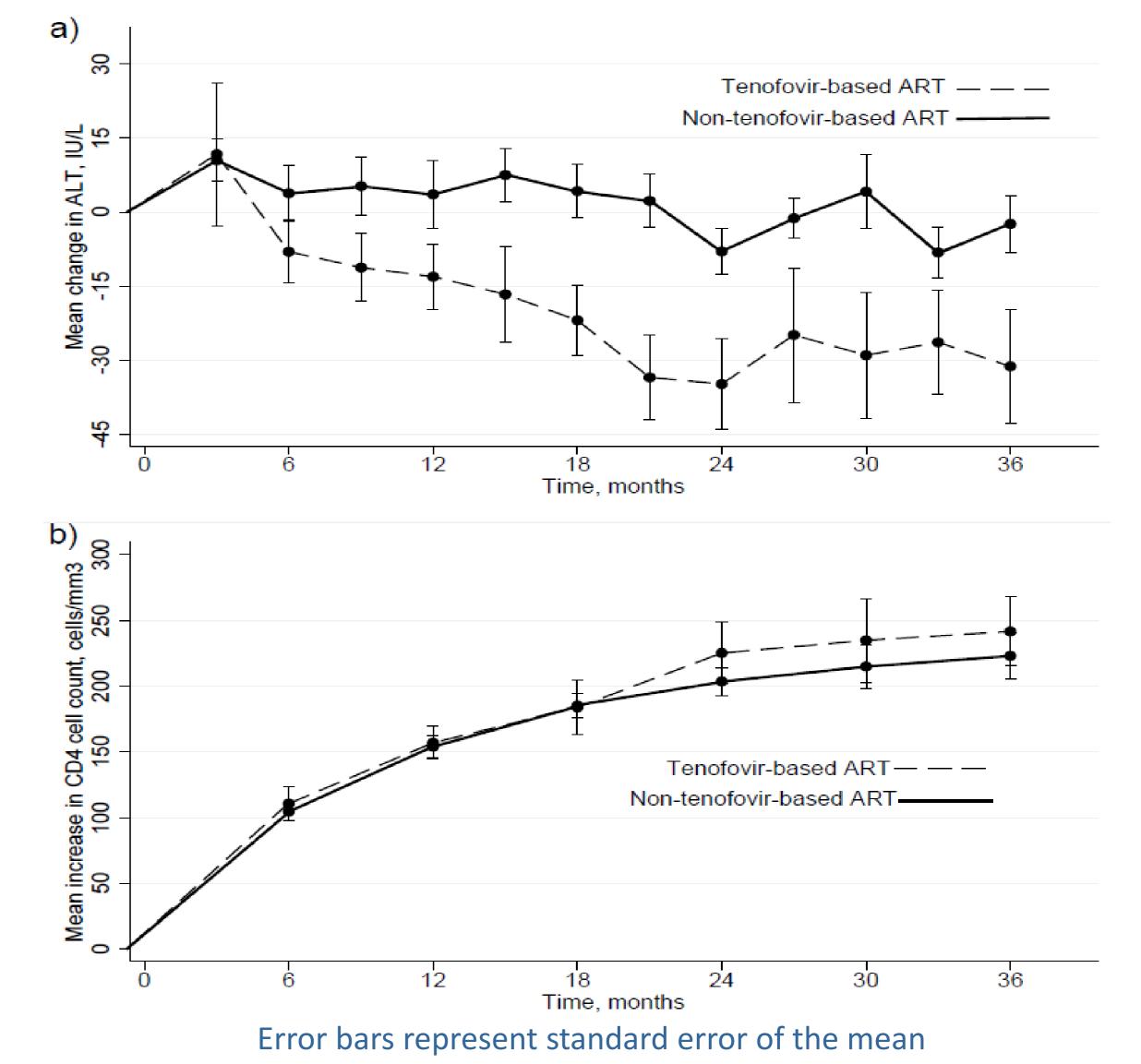
Introduction

The World Health Organisation recommends hepatitis B virus (HBV)/HIV co-infected individuals requiring HBV treatment start ART containing tenofovir. However, there is a lack of clear and feasible criteria to identify those requiring HBV treatment in many parts of Asia. Here we describe predictors of initiating ART with tenofovir and outcomes of ART in co-infected patients from a regional cohort.

Patients with baseline ALT>normal (OR 4.2 vs. normal, 95%CI 2.4 - 7.2, p<0.01) and those treated in high/high-middle income countries (OR 4.4 vs. low/low-middle, 95%CI 2.6 - 7.4, p<0.01) were more likely to receive tenofovir. Hepatitis C antibody-positive patients (OR 0.4 vs. negative, 95%CI 0.2 - 0.8, p<0.01) were less likely to receive tenofovir.

Methods

HBV surface antigen positive patients enrolled in the TREAT Asia HIV Observational Database who started ART were included. Follow up was censored at the first change of regimen or last documented clinic visit. ALT upper limits of normal were defined by the local clinic laboratories. Logistic regression adjusted for year of ART initiation was used to determine predictors of receiving tenofovir. Generalised estimating equations adjusted for time on ART were used to evaluate predictors of change in ALT level and CD4 cell count.


Results

There were 548 eligible patients; tenofovir was used by 149 (27.2%). Baseline characteristics are displayed in Table 1.

Table 1: Baseline characteristics

Non-tenofovir	Tenofovir

After 36 months, the raw mean reduction in ALT was 2.4 IU/L in

	(n=399)	(n=149)	
Male	306 (76.7)	121 (81.2)	
Age in years, median (IQR)	35.1 (29.6 - 41.1)	36.4 (29.9 - 44.3)	
HIV exposure			
Heterosexual	238 (59.6)	69 (46.3)	
Homosexual	79 (19.8)	62 (41.6)	
IDU	57 (14.3)	11 (7.4)	
Other	25 (6.3)	7 (4.7)	
Hepatitis C antibody- positive, n(%tested)	70 (19.6)	12 (9.8)	
ALT > normal, n(%tested)	97 (34.5)	64 (53.8)	
Creatinine clearance* in mL/min, median (IQR)	84.7 (70.1-104.0)	89.0 (72.3-109.6)	
CD4 cell count in cells/mm ³ , median (IQR)	95 (31 - 213)	134 (33 - 245)	
HIV viral load in copies/mL, median (IQR)	89,350 (11,793 - 336,274)	61,425 (20,175 - 128,874)	
NRTIs in regimen			
3TC/FTC	388 (97.2%)	148 (99.3%)	
AZT	165 (41.4%)	6 (4.0%)	
d4T	201 (50.4%)	0 (0.0%)	
Other	41 (10.3%)	6 (4.0%)	
NNRTI/PI/RAL in regimen			
Efavirenz	164 (41.1%)	106 (71.1%)	
Nevirapine	198 (49.6%)	7 (4.7%)	
PI or RAL	35 (8.8%)	32 (21.5%)	
Country income status^			
Low/low-middle	183 (45.9%)	32 (21.5%)	
High/high-middle	216 (54.1%)	117 (78.5%)	
Year of ART start			
2003 - 2006	165 (41.4%)	8 (5.4%)	
2007 - 2009	130 (32.6%)	74 (49.7%)	
2010 - 2013	104 (26.1%)	67 (45.0%)	

patients using non-TDF-based ART and 31.3 IU/L in patients using TDFbased ART (Figure 1a). In those starting ART with baseline ALT>normal, the adjusted mean ALT after tenofovir initiation was 11.2 IU/L (95%CI 0.9 - 21.6, p=0.03) lower compared with those using a non-tenofovirbased regimen (Table 2). Tenofovir use was not associated with an improved CD4 response to ART in raw analysis (Figure 1b) or in the final model (6 cells/mm³ greater for tenofovir vs. non-tenofovir, 95%CI -13 to 25, p=0.54). There were 13 deaths in total and mortality rates on tenofovir- and non-tenofovir-based ART were 0.9 (95%CI 0.3 - 2.7) and 1.6 (95%CI 0.8 - 2.9) per 100 patient-years, respectively.

Table 2: Predictors of ALT change (IU/L) after ART initiation

		Univariate	р	Multivariate	р
Base ALT	ART				
Normal	Non-tenofovir	0.0		0.0	
	Tenofovir	-6.2 (-16.3, 3.9)	0.23	-4.7 (-14.7, 5.3)	0.36
>Normal	Non-tenofovir	-21.6 (-29.9, -13.3)	<0.01	-24.1 (-32.4, -15.8)	<0.01
	Tenofovir	-35.1 (-44.5, -25.8)	<0.01	-35.3 (-44.6, -26.0)	<0.01
Hepatitis C antibody					
Negative		0.0		0.0	

Values are n(%total) unless otherwise specified; *Estimated using Cockcroft-Gault equation; ^As per The World Bank (<u>http://data.worldbank.org/country</u>)

The TREAT Asia HIV Observational Database

Negative0.00.00.00.00.012.7<0.01Positive(-3.6, 17.3)0.20(3.6, 21.8)<0.01

Values in parentheses represent 95%CI; All models were adjusted for time on ART

Conclusion

HBV/HIV co-infected patients in this Asian cohort were more likely to initiate ART with a tenofovir-based regimen if they had elevated ALT levels, were hepatitis C antibody-negative, and received care in a high/high-middle income country. Compared to other ART, tenofovirbased regimens more effectively reduced liver inflammation in HBV/HIV co-infection but did not result in a superior CD4 response.

A Kamarulzaman, Sharifah Faridah Syed Omar, Sasheela Vanar, Iskandar Azwa, and LY Ong, University Malaya Medical Center, Kuala Lumpur, Malaysia; CKC Lee, BLH Sim, and R David, Hospital Sungai Buloh, Malaysia; CV Mean, V Saphonn, and K Vohith, National Center for HIV/AIDS, Dermatology and STDs, Phnom Penh, Cambodia; E Yunihastuti‡, D Imran, and A Widhani, Working Group on AIDS Faculty of Medicine, University of Indonesia/ Cipto Mangunkusumo Hospital, Jakarta, Indonesia; FJ Zhang, HX Zhao, and N Han, Beijing Ditan Hospital, Capital Medical University, Beijing, China; JY Choi, Na S, and JM Kim, Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; M Mustafa and N Nordin, Hospital Raja Perempuan Zainab II, Kota Bharu, Malaysia; N Kumarasamy, S Saghayam, and C Ezhilarasi, YRG Centre for AIDS Research and Education, Chennai, India; OT Ng, PL Lim, LS Lee, and A Loh, Tan Tock Seng Hospital, Singapore; PCK Li and MP Lee, Queen Elizabeth Hospital, Chiang Rai, Thailand; P Phanuphak, K Ruxrungtham, A Avihingsanon, P Chusut, and S Sirivichayakul, HIV-NAT/Thai Red Cross AIDS Research Centre, Bangkok, Thailand; P Ditangcot, E Uy, and R Bantique, Research Institute for Tropical Medicine, Manila, Philippines; R Kantor, Brown University, Rhode Island, U.S.A.; S Oka, J Tanuma, and T Nishijima, National Center for Global Health and Medicine, Tokyo, Japan; S Pujari, K Joshi, and A Makane, Institute of Infectious Diseases, Pune, India; S Kiertiburanakul⁺, S Sungkanuparph, L Chumla, and N Sanmeema, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; TP Merati⁺, DN Wirawan, and F Yuliana, Faculty of Medicine, Siriaj Hospital, Mahidol University, Bangkok, Thailand; TT Pham, DD Cuong, and HL Ha, Bach Mai Hospital, Hanoi, Vietnam; W K Nguyen, VH Bui, and T Cao, National Hospital for Tropical Diseases, Hanoi, Vietnam; W K Nguyen, VH Bui, and T Cao, National Hospital for Tropical Diseases, Hanoi, Vietnam; W Ratanasuwan and R Sriondee, F

The TREAT Asia HIV Observational Database, TREAT Asia Studies to Evaluate Resistance, and the Australian HIV Observational Database are initiatives of TREAT Asia, a program of amfAR, The Foundation for AIDS Research, with support from the Dutch Ministry of Foreign Affairs through a partnership with Stichting Aids Fonds, and the U.S. National Institutes of Health's National Institute of Allergy and Infectious Diseases, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and National Cancer Institute, as part of the International Epidemiologic Databases to Evaluate AIDS (IeDEA; U01AI069907). TREAT Asia is also supported by ViiV Healthcare. Queen Elizabeth Hospital and the Integrated Treatment Centre received additional support from the Hong Kong Council for AIDS Trust Fund. The Kirby Institute is funded by the Australian Government Department of Health and Ageing, and is affiliated with the Faculty of Medicine, UNSW Australia. The content of this publication is solely the responsibility of the authors and does not necessarily represent the official views of any of the governments or institutions mentioned above.