# BRAIN PROCESSES ASSOCIATED WITH COGNITIVE CONTROL

ICON XII, Brisbane, Australia, 7/30/2014



### Speakers

- Diane Beck (U. of Illinois)
  - The role of feedback in visual processing
- Paul Corballis (U. of Auckland)
  - Lateralisation o the ERP reveals neural correlates of attention, distractor suppression, and visual short term memory
- Gabriele Gratton (U. of Illinois)
  - Investigating brain networks in task preparation
- Pauline Baniqued (U. of Illinois)
  - A functional and structural view of task-switching dynamics in ageing



# INVESTIGATING BRAIN NETWORKS IN TASK PREPARATION

#### **Gabriele Gratton & Monica Fabiani**

Psychology Department & Beckman Institute University of Illinois



## **Cognitive control**

- Set of operations that prepares the brain to perform a particular cognitive task
  - The same stimulus information can be processed in different ways
- It involves setting up the information processing system so as to weigh information appropriately for the particular task context at hand
  - Notion of "prepared reflexes" (Allport, A&P, 1980)
  - Interaction between top-down and bottom-up processes

### Brain areas involved in cognitive control

#### From fMRI work

- Cingulo-opercular network (black): Long-term goal setting
- Dorsal attention network (yellow): Trial-to-trial adaptation
- How are these areas related to each other?



From Dosenbach et al. PNAS 2007;104:11073-11078

#### **Preparation paradigm**



- Indicates the "rule" or task for that trial
- Prompts when and how to perform the task
- Some level of <u>conflict</u>
- Use the default or old rule
   Little activity
   OR

   Use a different rule
   More activity

Gratton et al., 2009; Baniqued et al., 2013; Leaver et al., submitted; Low et al., in preparation

#### EROS: A tool for studying the time course of preparatory activity Optical Recording EROS NIRS



**Reviews:** Gratton & Fabiani, *TICS*, 2001 Gratton & Fabiani, *Frontiers in Human Neuroscience*, 2010

| EROS. N=10/Study                                                                            |  |
|---------------------------------------------------------------------------------------------|--|
| Study 1<br>Auditory/Visual                                                                  |  |
| Precue:<br>Auditory Visual<br>A V                                                           |  |
| RS:<br>Lft Hand Rt Hand<br>O<br>Conflict:<br>Hear "I" + See "O"<br>or<br>Hear "O" + See "I" |  |

# **Task-general EROS activity**

#### Switch vs. No-Switch



## **Task-specific EROS activity**



# Preparation for Global/Local Processing



| Congrue           | nt | Incongruent |   |
|-------------------|----|-------------|---|
| н                 | н  | ннннн       | н |
| н                 | н  | н           |   |
| н                 | н  | н           |   |
| ннннн             | н  | ннннн       | н |
| н                 | н  |             | н |
| н                 | н  |             | н |
| н                 | н  | ннннн       | н |
| \$ \$ \$ \$ \$ \$ | s  | S           | s |
| s                 |    | S           | s |
| s                 |    | S           | s |
| 55555             | S  | 88888       | s |
|                   | S  | S           | s |
|                   | S  | S           | s |
| \$ \$ \$ \$ \$    | S  | S           | s |

#### Leaver et al., submitted

#### **Behavioral Results**



Local task is harder than global task More conflict in local than in global task



#### **Cross-correlation analysis**



#### **Preparation helps reduce conflict**



# How do top-down processes influence bottom-up processing?

 A flourishing of papers in the last five years indicate that processing of sensory stimuli is influenced by the amplitude and phase of oscillatory activity (alpha) in sensory cortex

E.g., Mathewson et al., JoN, 2009

- Do attentional networks influence these oscillatory activities?
  - E.g., Thut & Miniussi, TICS, 2009

#### **Meta-contrast masking**





#### Brain states and detection

Averaged evoked potential for detected and undetected targets



Probability of detection for trials with alpha phase in "high" and "low" mode



Probability of detection for trials with large and small alpha power



Mathewson et al., JoN, 2009

# Cortical excitability and alpha oscillations



## **Brain activity prior to targets**

#### EEG time frequency Detected - Undetected

Target Fixation Onset Onset 30 -75 Frequency (Hz) 10 -.75 -1000 -600 -400 -200 200 400 0 Time (ms) Time-locked activity

Mathewson, Beck, Ro, Fabiani, & Gratton, 2014

EROS alpha power map Detected - Undetected





#### EROS 10 Hz Alpha Detected - Undetected

-20 -10 -5 510 20

0

-255 ms

#### Backward-Lagged Cross Correlation Seed in cuneus (alpha)



Alpha in Cuneus

### Discussion

- Interaction between task-general areas (involved in top-down regulation) and task-specific areas (involved in bottom-up processing)
  - Task general areas include DAN and CON
    - Within DAN, frontal areas are activated before parietal ones
    - What is their respective role?
    - How are action plans represented here?
  - Task specific areas include visual, auditory, and motor networks
    - During preparation, they are activated during the foreperiod
    - Regulation of these areas may involve up- or down-regulation of rhythmic activity
      - The phase of the rhythmic activity may be involved in gating information processing
      - It may represent the excitability of particular cortical regions

## Acknowledgements

- CNL (present):
  - Monica Fabiani , Ph.D,
  - Pauline Baniqued
  - Courtney Burton
  - Antonio Chiarelli, Ph.D.
  - Antoine De Jong
  - Mark Fletcher
  - Tania Kong
  - Christina Koury
  - Kathy Low, Ph.D.
  - Ed Maclin, Ph.D.
  - Kyle Mathewson, Ph.D.
  - Nils Schneider-Garces
  - Chin Hong Tan
  - John Walker
  - Ben Zimmerman
- Former students and postdocs
  - Jason Agran, Vanderbilt
  - Chandramallika Basak, UT Dallas
  - Carrie Brumback, UC-Irvine
  - Bruce Bartholow, UNC
  - Paul Corballis, U of Auckland
  - Corby Dale, UC-SF
  - Brian Gordon, Washington Univ.
  - Erika Henry, UMC
  - Echo Leaver, Salisbury Univ.
  - Nate Parks, U Arkansas
  - Melanie Pearson, Emory
  - Elena Rykhlevskaia, Stanford Univ.
  - Jeff Sable, Christian Brothers Univ.
  - Eunsam Shin, Korea
  - Chun Yu Tse, CUHK
  - Emily Wee, UIUC
  - Christopher Whalen, Champaign
  - Eddie Wlotko, Tufts

- Collaborators
  - Renee Baillargeon, UIUC
  - Diane Beck, UIUC
  - Gary Dell, UIUC
  - Matt Dye, UIUC
  - Kara Federmeier, UIUC
  - Cynthia Fisher, UIUC
  - Susan Garnsey, UIUC
  - Enrico Gratton, UC Irvine
  - Dan Hyde, UIUC
  - Vicki Kazmerski, PSU-Erie
  - Art Kramer, UIUC
  - Alejandro Lleras, UIUC
  - Eddie McAuley, UIUC
  - Trevor Penney, NSU
  - Tony Ro, CUNY
  - Brad Sutton, UIUC
  - Fabrice Wallois, U de Picardie
- Extramural Funding Agencies
  - Abbott/CNLM
  - ABMRF
  - Carle Foundation
  - DARPA
  - McDonnell-Pew
  - Missouri ADRD
  - NIA
  - NIBIB
  - NIMH
  - NRCC
  - ONR

# Thank you



# **Dynamics of cognitive control**



- How does cognitive control operate?
  - What are the relationships between different cognitive control regions?
  - How do they influence each other?
  - How do they influence perceptual (bottom-up) areas?
  - What happens in the perceptual areas that influences stimulus processing?

## **Example: Conflict effects**





p(Feature Analysis) = acc(comp) – acc(incomp) p(Conjunction Analysis) = 0.5\*(acc(comp)+acc(incomp))

Gratton et al., JEP: Gen., 1992

# Conflict adaptation: Conflict adaptation:



# Interpreting conflict adaptation

 Strategy selection can be influenced by varying expectancy for compatible and incompatible noise



Gratton et al., JEP: General, 1992

## Summary



- In RT tasks, subjects prepare for incoming stimuli by preparing appropriate stimulus-response plans
   ideomotor function
- The fronto-parietal network (FPN) exerts an important role in preparation
  - Activation occurs first in frontal and then in parietal areas
  - Activation in FPN precedes that occurring in task-specific areas
  - The amount of preparatory activity is predictive of subsequent behavioral advantages
- EROS provides a tool for tracking the time course of preparatory activity