Non-invasive transcranial brain stimulation (NTBS) in Cognitive Neuroscience: A "connectivity" account

Hartwig R. Siebner

CONTrol of **act**ion Research Group

Danish Research Centre for Magnetic Resonance

Centre of Functional and Diagnostic Imaging and Research Copenhagen University Hospital Hvidovre, Denmark

LUNDBECKFONDEN

Introduction Non-invasive transcranial brain stimulation \Leftrightarrow Brain Connectivity

Non-invasive transcranial brain stimulation (NTBS)

Transcranial magnetic stimulation

- Single-pulse, burst, rTMS
- High-intensity TMS
- Inductive electrical stimulation
 Electrical=>Magnetic=>Electrical
- Tissue conductivity:
 Skull is no problem, brain
 tissue and CSF are a problem.
- Suprathreshold intensity (action potential=>synaptic)

Transcranial electrical stimulation

- Constant (DC), Alternating (AC)
- Low-intensity TES
- Electrical stimulation all the way to (and through) the brain!
- Tissue conductivity:
 Skull is THE problem, brain tissue and CSF are a problem.
- Subthreshold intensity (membrane potential=>synaptic)

Which spots are we stimulating?

Figure-8 TMS and monopolar TES are reasonably focal.

TMS with round or cap coil is non-focal but superficial.

Bipolar TES is non-focal and NOT suited for anatomical localization (Distortions by holes in the skull, skull thickness, both sites are stimulated, current orientation in tissue: tangential vs vertical).

Mapping the neural netwerk effects of NTBS:

Online versus offline approaches

Effective connectivity describes the influence of one brain area over another area

Structural Connectivity

Functional Connectivity

Effective Connectivity

Anatomical connections between brain areas forming a network.

Temporo-spatial covariance between brain areas forming a network.

The influence that brain areas exert over another in a given network.

Setting the frame for functional interactions.

No claims regarding directionality (undirected edges).

Claiming directionality, causality, and the flow of information.

A simple grasping network: vPMC = ventral premotor cortex M1 = primary motor hand area, aIPS = anterior intraparietal sulcus

TMS induces state-dependent network effects

- Stimulated cortex
- Connected cortical area
- Connected subcortical area

Spread of excitation to connected sites in the brain:

Orthodromic and antidromic excitation

TMS can be used to trace effective cortico-to-motor connectivity

Inducing lasting bidirectional changes in corticospinal excitability with rTMS

More recent protocols:

Quadripulse TMS

High-frequency PAS

Cortico-cortical PAS

Sinusoidal TDCS

TACS

Random noise stimulation

Ziemann et al. Brain Stimulation 2008

Repeated-measure within-subject design including a real and sham rTMS session

Study 1: Offline TMS of pre-SMA Improving control over impulsive response tendencies

Collaboration: K. Richard Ridderinkhof Cognitive Science Center Amsterdam, The Netherlands

Dealing with response interferences in a context of high motivation (potential reward)

Solving a response conflict: Context-dependent effect of 1Hz rTMS over pre-SMA on accuracy

Impairing pre-SMA function by noninvasive brain stimulation improved control over impulsive response tendencies

Change in accuracy \Leftrightarrow Change in activity

Activity in left IFG & left STN was predicted by individual differences in the rTMS-dependent reward related benefit in accuracy.

The higher the benefit in motor control, the stronger both areas were activated.

=> DCM analysis of effective connectivity

Bayesian model selection (BMS) focusing on a left-hemispheric per-SMA, IFG and STN network

BMS yielded strong evidence for the model postulating that both Prospect-of-reward and TMS modulated the connection from IFG to STN (model 9).

The models differed with regards to the modulated connection (pre-SMA-STN, IFG—STN, or both) and the experimental modulator (Prospect-of-reward, TMS, or both).

We also created a null model (M-1) with no connections being modulated.

Hierarchical multiple linear regression analysis: Change in accuracy \Leftrightarrow Change in activity & connectivity

The regression model comprising modulation of activity and connectivity of the IFG-STN pathway predicted88% variance of the behavioral benefit (p=0.001).

Entering connectivity values from the DCM analysis reflecting modulation of coupling by Prospect-of-reward and TMS (B-matrix) significantly improved model predictions of the behavioral benefit (reward-related benefit in accuracy after rTMS) with an R 2-change of 0.124 (p = 0.036).

The independent variables (predictors) of the regression model are marked in red.

Summary slide - Study I

Parallel vs hierarchical model of the pre-SMA - IFG - STN pathway

The results of the current study provide causal evidence for parallel organization of the pre-SMA-STN and IFG-STN pathways, since improved control over impulsive responses was linked to an enhancedIFG-STN connectivity after pre-SMA had been disrupted.

Study 2: Offline TMS of left IFG Effects on pseudo-word repetition Inter-hemispheric compensation

Collaborators: Dorothee Saur, Department of Neurology, University of Leipzig, Germany Cathy J. Price, Wellcome Trust Centre for Neuroimaging, University College London, UK Annette Baumgaertner, Hochschule Fresenius Hamburg, Germany

Inter-hemsipheric adaptive plasticity between right-left IFG

Short-term reorganization related to pseudoword repetition

etc.

stimulus onset asynchrony: 4-8 s

Adaptive plasticity in the language system

A Pseudoword > word repetition after sham cTBS

T-score

T-score

Increased activity in left pIFG during pseudoword repetition

Adaptive plasticity in the language system

Virtual lesion of left pIFG

Adaptive upregulation of the right pIFG to maintain task function

Decreased activation during pseudoword repetition after cTBS over left pIFG vs. cTBS of left aIFG

$$x = -54$$

y = 12

Increased activation during pseudoword repetition after cTBS over left pIFG vs. cTBS of left aIFG

$$x = 54$$

lpIFG rpIFG

T-values > 3.5

z=8

T-values > 3.5

_InIFG

Adaptive plasticity in the language system

F Virtual lesion of left pIFG

Increased connectivity from right to left pIFG after virtual lesion of left pIFG

Summary slide - Study II

Adaptive tuning of inter-hemispheric interaction between left and right pIFG

Virtual lesion of left pIFG

The results of the current study provide causal evidence for acute re-weighting of task related activity and effective connectivity between left and right pIFG.

TMS is a valuable tool to shape effective connectivity of cogitive brain networks and relate these effects to behavior:

Study I: 1Hz rTMS to pre-SMA

Modulation of intrahemispherical corticosubcortical connectivity between IFG-STN

=> Better control over impulsive response tendencies

Study II: cTBS to left pIFG

Inter-hemispheric cortico-cortical connectivity between right & left pIFG during pseudo-word repetition => Compensation

The contact group

February 2014

contacts